[1] MANSOUR A,ALESSANDRO D,WILLIAM J,et al. Climate change 2021:the physical science basis[M]. New York:Cambridge University Press,2021:1363-1512 [2] LEVERENZ J W,BRUHN D,SAXE H. Responses of two provenances of Fagus sylvatica seedlings to a combination of four temperature and two CO2 treatments during their first growing season:gas exchange of leaves and roots[J]. New Phytologist,1999,144(3),437-454 [3] 吕晓敏,王玉辉,周广胜,等. 温度与降水协同作用对短花针茅生物量及其分配的影响[J]. 生态学报,2015,35(3):752-760 [4] WANG Y,DU S T,LI L L,et al. Effect of CO2elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings[J]. Pedosphere,2009,19(5):570-576 [5] 纪若璇,于笑,常远,等. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义[J]. 植物生态学报,2020,44(3):277-286 [6] 张桂莲,陈立云,张顺堂,等. 抽穗开花期高温对水稻剑叶理化特性的影响[J]. 中国农业科学,2007(7):1345-1352 [7] SMIRNOFF N,CUMBES Q J. Hydroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry,1989,28(4):1057-1060 [8] GRASSI G,MEIR P,CROMER R,et al. Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply[J]. Plant Cell Environment,2010,25(12):1677-1688 [9] 刘香萍,崔国文,李国良,等. 紫花苜蓿主根内非结构性碳水化合物累积及其与抗寒性的关系[J]. 中国草地学报,2010,32(2):113-116 [10] 王喜勇,王成云,魏岩. 梭梭属植物渗透调节物质的季节性变化[J]. 安徽农业科学.2014,42(5):1427-1428. [11] 杨春勐,代微然,索默,等. 增温对滇杨和川杨生长及生理特性的影响[J]. 西南林业大学学报(自然科学),2018,38(3):63-70 [12] 张希山,代连义,王志杰,等. 禾草饲料之王——无芒雀麦[J]. 新疆畜牧业,2002(4):28-29 [13] 李瑞强,王玉祥,孙玉兰等. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报,2023,32(1):99-111 [14] 路璐,黄梦琪,隋晓青,等. 6份无芒雀麦种质耐酸碱胁迫能力比较研究[J]. 智慧农业导刊,2022,2(16):28-30 [15] 孙可蒙,隋晓青,王玉祥,等. PEG模拟干旱胁迫下12份新疆野生无芒雀麦种质萌发期抗旱性评价[J]. 草原与草坪,2020,40(6):102-107,117 [16] 王玉祥,杜雨,陈映霞,等. 盐胁迫对无芒雀麦种子萌发及苗期生理指标的影响[J]. 干旱区资源与环境,2022,36(05):139-145 [17] 田梦,孙宗玖,李培英,等. 增温对蒿类荒漠草地可萌发土壤种子库及其多样性的影响[J]. 草地学报,2020,28(1):141-148 [18] 蔡庆生. 植物生理学实验[M]. 北京:中国农业大学出版社,2013:75-96 [19] VALPINE P D,HARTE J. Plant responses to experimental warming in a montane meadow[J]. Ecology,2001,82(1):637-648 [20] MILLA R,REICH P B. The scaling of leaf area and mass:the cost of light interception increases with leaf size[J].Proceedings of the Royal SocietyB:Biological Sciences,2007,274(1622):2109-2115 [21] 张发起,付鹏程,高庆波,等. 蒺藜科及由其分出的两新科四种植物种子形态特征比较研究[J]. 植物分类与资源学报,2013,35(3):280-284 [22] GUO C Y,MA L N,YUAN S,et al,. Morphological,physiological and anatomical traits of plant functional types in temperate grasslands along a large-scale aridity gradient in northeastern China[J]. Scientific Reports,2017,7(1):40900 [23] 刘全宏,王孝安,田先华,等. 太白红杉(Larix chinensis)叶的形态解剖学特征与环境因子的关系[J]. 西北植物学报,2001(5):885-893 [24] 肖晴,林轸荣,姜风岩,等. 放牧强度对高寒草甸优势植物叶片解剖结构的影响[J]. 草地学报,2023,31(10):3018-3025 [25] VERBOVEN P,HERREMANS E,HELFEN L,et al,. Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves[J]. Plant Journal,2015,81(1):169-182 [26] 刘兴菊,马源,马晖玲,等. 2,3-丁二醇诱导下匍匐翦股颖叶片细胞结构变化及抗病相关性分析[J]. 草业学报,2017,26(12):170-178 [27] 郝爱华,罗正明,田志杰,等. 模拟增温对五台山亚高山草甸植物群落与土壤性质的影响[J].草地学报,2023,31(12):3793-3801 [28] 何云,李贤伟,龚伟. 3种岩石边坡护坡植物叶片质膜透性和可溶性糖含量对低温胁迫的响应[J]. 四川农业大学学报,2012,30(1):42-45 [29] 张尚雄,尼玛平措,徐雅梅,等. 3个披碱草属牧草对低温胁迫的生理响应及苗期抗寒性评价[J]. 草业科学,2016,33(6):1154-1163 [30] 武高林,杜国祯. 青藏高原退化高寒草地生态系统恢复和可持续发展探讨[J]. 自然杂志,2007(3):159-164 [31] 萨仁高娃,李生军. 低温胁迫对生长在高海拔地区6种披碱草属种质材料抗寒性生理指标的影响[J]. 黑龙江畜牧兽医,2012(21):83-85 [32] 陈岩,岳丽杰,刘永红,等. 营养生长期持续高温处理对玉米叶片转录组及生化指标的影响[J]. 玉米科学,2022,30(4):48-55,61 [33] 郭连安,莫让瑜,谭均,等. 高温胁迫下半夏叶片的转录组分析[J]. 甘肃农业大学学报,2022,57(3):84-94 [34] 唐军,丁西朋,陈志坚,等. 木豆响应低温胁迫差异表达基因分析[J]. 草地学报,2022,30(7):1701-1711 [35] KIELBOWICZ-MATUK A,REY P,RORAT T. Interplay between circadian rhythm,time of the day andosmotic stress constraints in the regulation of the expression of a Solanum double B-box gene[J]. Annals of Botany,2014,113(5):831-842 [36] SEO P J,MAS P. Stressing the role of the plant circadian clock[J]. Trends Plant Science,2015,20(4):230-237 [37] 付娟娟,刘建,孙永芳,等. 冷胁迫对2种垂穗披碱草生长和生理特性的影响[J]. 草地学报,2014,22(4):789-795 |