Acta Agrestia Sinica ›› 2021, Vol. 29 ›› Issue (6): 1148-1157.DOI: 10.11733/j.issn.1007-0435.2021.06.003
Previous Articles Next Articles
LIU Ling-yun1,2, FAN Xi-feng2, TENG Ke2, YUE Yue-sen2, CHANG Zhi-hui1, WU Ju-ying2
Received:
2020-11-16
Revised:
2020-12-10
Online:
2021-06-15
Published:
2021-07-05
刘凌云1,2, 范希峰2, 滕珂2, 岳跃森2, 常智慧1, 武菊英2
通讯作者:
常智慧,E-mail:changzh@bjfu.edu.cn;武菊英,E-mail:wujuying@grass-env.com
作者简介:
刘凌云(1995-),汉族,女,山东潍坊人,博士研究生,主要从事草坪、观赏草分子生物学研究,E-mail:liulingyun01@163.com
基金资助:
CLC Number:
LIU Ling-yun, FAN Xi-feng, TENG Ke, YUE Yue-sen, CHANG Zhi-hui, WU Ju-ying. Advances in Development of Genetic Diversity of Carex L.[J]. Acta Agrestia Sinica, 2021, 29(6): 1148-1157.
刘凌云, 范希峰, 滕珂, 岳跃森, 常智慧, 武菊英. 苔草属植物遗传多样性研究进展[J]. 草地学报, 2021, 29(6): 1148-1157.
[1] Teng K,Teng W J,Wen H F,et al. PacBio single-molecule long-read sequencing shed new light on the complexity of the Carex breviculmis transcriptome[J]. BMC Genomics,2019,20(1):158-164 [2] Lipnerova I,Bures P,Horova L,et al. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base compositio[J]. Annals of Botany,2013,111(1):79-94 [3] Group G C.Making Carex monophyletic (Cyperaceae,tribe Cariceae):a new broader circumscription[J]. Botanical Journal of the Linnean Society,2015,179(1):1-42 [4] Starr J R,Naczi R F,Chouinard B N. Plant DNA barcodes and species resolution in sedges (Carex,Cyperaceae)[J]. Molecular Ecology Resources,2010,9(s1):151-163 [5] Starr J R,Ford B A. Phylogeny and evolution in Cariceae (Cyperaceae):current knowledge and future directions[J]. The Botanical Review,2008,75(1):110-137 [6] 卢崇恩,赵文恩,张佐. 五台山苔草的饲用价值[J]. 草与畜杂志,1995(3):7-9 [7] 袁晓颖,苏含英. 野生牧草资源-河沙苔草的研究[J]. 东北林业大学学报,1992,20(4):98-101 [8] 周强. 老芒麦EST-SSR分子标记开发与遗传多样性分析[D]. 兰州:兰州大学,2016:15-16 [9] 郑轶琦. 假俭草种质遗传多样性分析、遗传图谱构建及重要性状QTL定位[D]. 南京:南京农业大学,2009:35-46 [10] M Pedersen A T,Nowak M D,Brysting A K,et al. Hybrid origins of Carex rostrata var. borealis and C.stenolepis,two problematic taxa in Carex section Vesicariae (Cyperaceae)[J]. Plos One,2017,11(10):1 [11] Gillespie E L,Pauley A G,Haffner M L,et al. Fourteen polymorphic microsatellite markers for a widespread limestone endemic,Carex eburnea (Cyperaceae:Carex sect. Albae)[J]. Applications in Plant Sciences,2017,5(8):1700031 [12] Reznicek A A. Evolution in sedges (Carex,Cyperaceae)[J]. Canadian Journal of Botany,1990,68(7):1409-1432 [13] 冷建红,楼炉焕,魏琦,等. 薹草属植物研究进展及园林应用前景研究[J]. 北方园艺,2011(6):196-201 [14] Wang Y,Yang H,Li X,et al. Carex jianfengensis (Carex sect. Rhomboidales,Cyperaceae),a New Species from Hainan,China[J]. Plos One,2015,10(9):e0136373 [15] Naczi R F C. Carex pigra,a new species of carex section Griseae (Cyperaceae) from the southeastern united states of America[J]. Novon A Journal for Botanical Nomenclature,1997,7(1):67-71 [16] Liu W S,Zhou Y,Liao H,et al. Microsatellite primers in Carex moorcroftii (Cyperaceae),a dominant species of the steppe on the Qinghai-Tibetan Plateau[J]. American Journal of Botany,2011,98(12):382-384 [17] Ángel,Pintos,Pablo,et al. Six new species of Arthrinium from Europe and notes about A. caricicola and other species found in Carex spp. hosts[J]. MycoKeys,2019,49:15-48 [18] 李国平,杨鹭生. 蕨状苔草新变型-银边蕨状苔[J]. 福建林业科技,2019,46(4):58-59 [19] Kim C,Jung J,Choi H-K. Molecular identification of Schoenoplectiella species (Cyperaceae) by use of microsatellite markers[J]. Plant Systematics and Evolution,2012,298(4):811-817 [20] Shekhovtsov S V,Shekhovtsova I N,Peltek S E. Phylogeny of Siberian species of Carex sect. Vesicariae based on nuclear and plastid markers[J]. Nordic Journal of Botany,2012,30(3):343-351 [21] Léveillé-Bourret É,Starr J R,Ford B A. Why are there so many sedges? Sumatroscirpeae,a missing piece in the evolutionary puzzle of the giant genus Carex (Cyperaceae)[J]. Molecular Phylogenetics and Evolution,2018,119:93-104 [22] 庞莉莉,李玉双,陈洁,等. 江苏野生苔草属植物资源调查与多样性分析[J]. 东北林业大学学报,2015(5):75-79 [23] Yu F H,Kruesi B O,Schneller J J,et al. Positive correlation between vegetation dissimilarity and genetic differentiation of Carex sempervirens[J]. Flora-Morphology,Distribution,Functional Ecology of Plants,2009,204(9):651-657 [24] 梁芳,白淑媛,董爱香,等. 18种苔草属植物种子生物学特性的比较[J]. 草业科学,2011,28(10):1825-1830 [25] 何池全,赵魁义. 毛果苔草种群地上生物量与株长或鞘高分形特征[J]. 应用生态学报,2003(4):161-163 [26] 张咏梅,白小明,田彥锋,等. 4种观赏草叶片解剖结构的观察及其对环境的适应性分析[J]. 草地学报,2019,27(5):1377-1383 [27] 丁雪珍. 山东苔草属植物叶表皮微形态的研究[D]. 济南:山东师范大学,2008:5-15 [28] 罗弦,潘远智,杨学军,等. 6种北京山区野生苔草种子生物学特性的比较[J].安徽农业科学,2009,37(9):4184-4186 [29] 梁芳,董爱香. 北京地区苔草属植物资源调查、综合性状评价及园林应用[J]. 园林科技,2015(2):1-6 [30] 梁芳,董爱香,郑云峰,等. 20种苔草形态学和生殖生物学特性研究[C]//北京市科学技术协会、北京市园林绿化局、北京市公园管理中心、北京园林学会.北京园林绿化建设与发展.北京:北京园林学会,2016:119-124 [31] 刘凌云,范希峰,滕珂,等. 基于SSR标记的苔草种质遗传多样性分析[J]. 分子植物育种,2021,19(4):1250-1259 [32] Schmidt L,Schmid B,Oja T,et al. Genetic differentiation,phenotypic plasticity and adaptation in a hybridizing pair of a more common and a less common Carex species[J]. Alpine Botany,2018,128(2):149-167 [33] Ford B A,Starr J R,Thanh N T K,et al. Two Extraordinary New Pseudopetiolate Carex Species from Vietnam (sect. Hemiscaposae,Cyperaceae)[J]. Systematic Botany,2017,42(3):402-417 [34] 马万里,高艳春,王秀英. 苔草属硅细胞的形态特点及其分类学意义[J]. 内蒙古师大学报(自然科学汉文版),1996(3):63-67 [35] 张树仁,戴伦凯,梁松筠. 苔草属复序苔草亚属植物果皮的扫描电镜观察[J]. 广西植物,2000(2):185-188+204 [36] 马万里,高艳春. 苔草属果实表皮的超微结构及其在分类学上的意义[J]. 西北植物学报,1998,018(1):66-71 [37] Tanaka N. Chromosome studies in Cyperaceae[J]. Cytologia,1939,10(3):348-362 [38] Whitkus R. Chromosome counts of Carex section Ovales[J]. Botanical Gazette,1991,152(2):224-230 [39] Hipp A L. Nonuniform processes of chromosome evolution in sedges (Carex:Cyperaceae)[J]. Evolution,2007,61(9):2175-2194 [40] Escudero M,Maguilla E,Loureiro J,et al. Genome size stability despite high chromosome number variation in Carex gr. laevigata[J]. American Journal of Botany,2015,102(2):233-238 [41] Id H W,Kalinka A,J Koppman,et al. Chromosome numbers of Carex (Cyperaceae) and their taxonomic implications[J]. Plos One,2020,15(2):e0228353 [42] Bogucka-Kocka A,Szewczyk K,Janyszek M,et al. RP-HPLC analysis of phenolic acids of selected central european Carex L. (Cyperaceae) species and its implication for taxonomy[J]. Journal of Aoac International,2011,94(1):9-16 [43] King M G. Phylogeography and population genetics of Carex macrocephala,and the molecular evolution of Carex subgenus Vignea[D]. Washington:Washington state university,2007:2-5 [44] Hendrichs M,Oberwinkler F,Begerow D,et al. Carex,subgenus Carex (Cyperaceae)-A phylogenetic approach using ITS sequences[J]. Plant Systematics and Evolution,2004,246(1/2):89-107 [45] Jiménez-Mejías P,Hahn M,Lueders K,et al. Megaphylogenetic specimen-level approaches to the Carex (Cyperaceae) phylogeny using ITS,ETS,and matK sequences:implications for classification[J]. Systematic Botany,2016,41(3):500-518 [46] JP Pinzón,IM Ramírez-Morillo,C Germán,et al. Phylogenetics and evolution of the Tillandsia utriculata complex (Bromeliaceae,Tillandsioideae) inferred from three plastid DNA markers and the ETS of the nuclear ribosomal DNA[J]. Botanical Journal of the Linnean Society,2016,181(3):362-390 [47] Ning H,Wang W,Zheng C,et al. Genetic diversity analysis of sedges (Carex spp.) in Shandong,China based on inter-simple sequence repeat[J]. Biochemical Systematics & Ecology,2014,56:158-164 [48] Tripathi A M,Tyagi A,Kumar A,et al. The Internal Transcribed Spacer (ITS) Region and trnhH-psbA Are Suitable Candidate Loci for DNA Barcoding of Tropical Tree Species of India[J]. Plos One,2014,9(8):e57934 [49] Míguez M,Gehrke B,Maguilla E,et al. Carex sect. Rhynchocystis (Cyperaceae):a Miocene subtropical relict in the Western Palaearctic showing a dispersal-derived Rand Flora pattern[J]. Journal of Biogeography,2017,44(10):2211-2224 [50] 李海生. ISSR分子标记技术及其在植物遗传多样性分析中的应用[J]. 生物学通报,2004,39(2):19-21 [51] 王建波. ISSR分子标记及其在植物遗传学研究中的应用[J]. 遗传,2002,24(5):613-616 [52] Zhang Z,Xie W,Zhao Y,et al. EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species[J]. BMC Plant Biology,2019,19(1):235-235 [53] Pan L,Huang T,Yang Z,et al. EST-SSR marker characterization based on RNA-sequencing of Lolium multiflorum and cross transferability to related species[J]. Molecular Breeding,2018,38(6):1-12 [54] Freitag M,Zhou Y,Chen L,et al. De Novo assembly of Auricularia polytricha transcriptome using Illumina sequencing for gene discovery and SSR marker identification[J]. Plos One,2014,9(3):e91740 [55] Liu W,Zhou Y,Liao H,et al. Microsatellite primers in Carex moorcroftii (Cyperaceae),a dominant species of the steppe on the Qinghai-Tibetan Plateau[J]. American Journal of Botany,2011,98(12):e382-e384 [56] Li M N,Long R C,Feng Z R,et al. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq[J]. 农业科学学报:英文版,2018,17(1):184-196 [57] Ohsako T,Yamane K. Isolation and characterization of polymorphic microsatellite loci in Asiatic sand sedge,Carex kobomugi Ohwi (Cyperaceae)[J]. Molecular Ecology Notes,2007,7(6):1023-1025 [58] King M G,Roalson E H. Isolation and characterization of 11 microsatellite loci from Carex macrocephala (Cyperaceae)[J]. Conservation Genetics,2009,10(3):531-533 [59] M'baya J B,Hoffmann A A. Genetic Structure of Carex Species from the Australian Alpine Region along Elevation Gradients:Patterns of Reproduction and Gene Flow[J]. International Journal of Plant Sciences,2013,174(2):189-199 [60] Nagasawa K,Setoguchi H,Maki M,et al. Development and characterization of EST-SSR markers for Carex angustisquama (Cyperaceae),an extremophyte in solfatara fields[J]. Applications in Plant Sciences,2018,6(10):e01185 [61] Arroyo J M,Escudero M,Jordano P. Isolation of 91 polymorphic microsatellite loci in the western Mediterranean endemic Carex helodes (Cyperaceae)[J]. Applications in Plant Sciences,2016,4(1):1500085 [62] Liu L,Fan X,Tan P, et al. The development of SSR markers based on RNA-sequencing and its validation between and within Carex L. species[J]. BMC Plant Biology,2021,21(1):02792 [63] Starr J R,Janzen F H,Ford B A. Three new,early diverging Carex (Cariceae,Cyperaceae) lineages from East and Southeast Asia with important evolutionary and biogeographic implications[J]. Molecular Phylogenetics and Evolution,2015,88:105-120 [64] Vellend M,Lechowicz M J,Waterway M J. Environmental distribution of four Carex species (Cyperaceae) in an old rowth forest[J]. America Joural of Botany,2000,87(10):1507-1516 [65] Benítez-Benítez C,Escudero M,Rodríguez-Sánchez F,et al. Pliocene-Pleistocene ecological niche evolution shapes the phylogeography of a Mediterranean plant group[J]. Molecular Ecology,2018,27(7):1696-1713 [66] 马万里,韩烈保,罗菊春. 草坪植物的新资源-苔草属植物[J]. 草业科学,2001,18(2):43-45 [67] 王俊强,吕会刚,方唯,等. 苔草属种质资源的研究与应用[J]. 北京园林,2006(2):38-40 [68] 梁芳,董爱香,马燕. 北京野生苔草属植物资源调查及观赏性状评价[J]. 草业科学,2012,29(5):710-716 [69] 杨泽新,蔡维湘. 灌丛草地放牧山羊的牧草适口性与嗜食性及山羊采食率研究[J]. 草业科学,1995(2):17-21,4 [70] 吉文丽,朱清科,李卫忠,等. 苔草植物分类、利用及物质循环研究进展[J]. 草业科学,2006,23(2):15-21 [71] 马建章,杜永欣. 马鹿和狍饲料植物的营养质量[J]. 生态学报,1996,16(3):269-275 [72] 萧运峰,陈茂庆. 野生草坪植物-寸草苔的研究[J]. 生物学杂志,1996(4):15-17 [73] 张少华,孟红. 翼果苔草提取物体外抗病毒的实验研究[J]. 山东中医杂志,2010(4):48-49 [74] 倪培忠,王俐,高元清. 白颖苔草片剂(颗粒剂)的研制[J]. 时珍国医国药,2004(4):223-224 [75] Arraki K,Totoson P,Decendit A,et al. Cyperaceae Species Are Potential Sources of Natural Mammalian Arginase Inhibitors with Positive Effects on Vascular Function[J]. Journal of Natural Products,2017,80(9):2432-2438 [76] Fang W P,Meinhardt L W,Tan H W,et al. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers[J]. Horticulture Research,2014,1(1):14035 [77] Shen C,Du H,Chen Z,et al. The chromosome-level genome sequence of the Autotetraploid Alfalfa and resequencing of core germplasms provide genomic resources for Alfalfa research[J]. Molecular Plant,2020,13(9):1250-1261 [78] Huang L,Feng G,Yan H,et al. Genome assembly provides insights into the genome evolution and flowering regulation of orchard grass[J]. Plant Biotechnology Journal,2019,18(2):373-388 [79] Yan Q,Wu F,Xu P,et al. The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth[J]. Molecular ecology resources,2020,21(2):526-542 [80] Can M,Wei W,Zi H,et al. Genome sequence of Kobresia littledalei, the first chromosome-level genome in the family Cyperaceae[J]. Scientific Data,2020,7(1):175-175 [81] Zhao X,Zhang J,Zhang Z,et al. Hybrid identification and genetic variation of Elymus sibiricus hybrid populations using EST-SSR markers[J]. Hereditas,2017,154(1):15-15 [82] 闵学阳,刘文献,张正社,等. 苜蓿DUS测试标准品种SSR分子标记指纹图谱的构建[J]. 草业学报,2017,26(11):47-56 [83] 魏臻武,符昕,耿小丽,等. 苜蓿遗传多样性和亲缘关系的SSR和ISSR分析[J]. 草地学报,2007(2):118-123 [84] 麻丽颖,孔德仓,刘华波,等. 36份枣品种SSR指纹图谱的构建[J]. 园艺学报,2012,39(4):647-654 [85] 李怀志,张峻,李翔,等. 应用SRAP标记对茄子品种进行遗传多样性分析与指纹图谱构建[J]. 南京农业大学学报,2011(4):22-26 [86] 王杰,高秋,杨国锋,等. 国审苏丹草和高丹草品种SSR指纹图谱构建及遗传多样性分析[J]. 草地学报,2016,24(1):156-164 [87] 梁芳,李子敬,董爱香,等. 涝峪苔草新品种‘银妃’[J]. 园艺学报,2019,46(S2):178-179 |
[1] | MA Cong-yu, HAN Chong-yang, MA Sai-nan, LI Xu-xu, CAI Jia-bang, WANG Yang, ZHANG Xin-quan, NIE Gang. The Fingerprints of 13 White Clover (Trifolium repens L.) Cultivars Based on SSR Markers [J]. Acta Agrestia Sinica, 2021, 29(9): 1892-1899. |
[2] | LUO Ming-xin, LIU Feng-min, CHEN Ji-yan, CUI Jun-tao, ZHANG Wei-li. Agronomic Traits and Genetic Diversity Analysis of M3 Generation of Stylosanthes spp. Irradiated by 60Coγ [J]. Acta Agrestia Sinica, 2021, 29(9): 1992-2000. |
[3] | LIANG Xiao-yu, JI Yang, HU Yuan-bin, YI Jun, BAI Shi-qie, ZHANG Jing, ZHANG Xin-quan. Exploitation and Universal Analysis of EST-SSR Molecular Markers in Cichorium intybus [J]. Acta Agrestia Sinica, 2021, 29(9): 2081-2090. |
[4] | CHEN Zhi-xiang, LUO Xiao-yan, LI Shuan-lin, WU Ru-yue, WANG Wen-qiang, DING Xi-peng. Genetic Diversity and Population Structure Analysis of the Pigeonpea (Cajanus cajanL.) Germplasm Resources Based on SSR Markers [J]. Acta Agrestia Sinica, 2021, 29(5): 904-911. |
[5] | LIANG Guo-ling, LIU Wen-hui, MA Xiang. Phenotypic Diversity of the Panicle Among 590 Covered Oats Germplasm Resources in Apline of Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2021, 29(3): 495-503. |
[6] | ZHANG Qi, WEI Zhen-wu, YAN Tian-fang, GENG Xiao-li. Identification and Evaluation of Genetic Diversity of Agronomic Traits in Oat Germplasm Resources [J]. Acta Agrestia Sinica, 2021, 29(2): 309-316. |
[7] | AN Ming-zhu, HAN Bo, JIANG Hua, DUAN Xin-hui, WEN Yi-fu, ZHOU Kai. Research Progress of Dactylis Species Origin and Phylogeny Analysis [J]. Acta Agrestia Sinica, 2021, 29(12): 2637-2644. |
[8] | WANG Jian-li, LIU Jie-lin, ZHU Rui-fen, ZHONG Peng, YOU Jia, DI Gui-li, HAN Wei-bo, SHEN Zhong-bao. Genetic Diversity Analysis of Major Agronomic Traits in 28 Amaranthus hypochondriacus Germplasm Resources [J]. Acta Agrestia Sinica, 2020, 28(4): 1050-1059. |
[9] | YANG Yan-ting, SHI Feng-ling, XU Bo, ZHANG Yu-tong, YAN Wei. Identification and Genetic Diversity of Alfalfa Varieties [J]. Acta Agrestia Sinica, 2020, 28(4): 1060-1067. |
[10] | MA Dong-mei, ZHANG Xi-bin, HUANG Ting, WANG Weng-jing, ZHAO Li-juan, MA Qiao-li. Genetic Diversity Analysis of 10 Salt Tolerant Alfalfa [J]. Acta Agrestia Sinica, 2019, 27(6): 1477-1485. |
[11] | LIU Ya-ling, GENG Ya-ping, XIE Xiao-dong, WANG Fang, ZHANG Peng-fei. Genetic Diversity and Genetic Structure Analysis of Astragalus Based on SSR Molecular Marker [J]. Acta Agrestia Sinica, 2019, 27(5): 1154-1162. |
[12] | DENG Zhen-Shan, LI Mai-ping, HAO Lei, CHEN Kai-kai, LI Jing, LIU Yu-zhen, ZHANG Bao-bao, QI Xiang-ying. Diversity and Plant Growth Promoting Activities of the Culturable Endophytic Bacteria Associated with Pennisetum sp. [J]. Acta Agrestia Sinica, 2019, 27(5): 1213-1221. |
[13] | XU Zhen-peng, WAN Tao, CAI Ping, ZHANG Xiao-ming, YI Wei-dong, WAN Yi-chao. Study on the Relevance between Genetic Diversity of Gymnocarpos przewalskii Populations and Geographic Climatic Factors [J]. Acta Agrestia Sinica, 2018, 26(1): 70-76. |
[14] | NAN Ming, ZHAO Gui-Qin, CHAI Ji-Kuan. Phenotypic Diversity and Comprehensive Evaluations of Avena sativa L. Germplasm in Semi-arid Area of the Loess Plateau [J]. Acta Agrestia Sinica, 2017, 25(6): 1197-1205. |
[15] | LI Xiao-yan, LIAO Li-ping, GAO Yong, DANG Xiao-hong, YUCHI Wen-si, CHENG Bo, ZHANG Cen. Research Progress on Ammopiptauthus [J]. Acta Agrestia Sinica, 2017, 25(5): 921-926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||