[1] CHENG C,SEAL A,MURHPY S,et al. Red- fleshed kiwifruit(Actinidia chinensis)breeding in New Zealand[J]. Acta Horticulturae,2007(753):139-146 [2] 陕西省统计局.陕西统计年鉴2022[DB/OL]. http://tjj.shaanxi.gov.cn/tjsj/ndsj/tjnj/sxtjnj/index.html?2022,2023-08/2023-09-20 [3] 屈振江,柏秦凤,梁轶,等.气候变化对陕西猕猴桃主要气象灾害风险的影响预估[J].果树学报,2014,31(5):873-878 [4] 李会科,赵政阳,张广军.果园生草的理论与实践——以黄土高原南部苹果园生草实践为例[J].草业科学,2005(8):32-37 [5] ZHENG J Y,ZHAO J S,SHI Z H et al. Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China:Bare land vs. grass-covered land[J]. Agriculture,Ecosystems and Environment,2021(309):107254 [6] YANG W,JI Z,AOLIN W,et al. Inconsistent responses of soil bacterial and fungal community's diversity and network to magnesium fertilization in tea (Camellia sinensis) plantation soils[J]. Applied Soil Ecology,2023(191):105055 [7] BAHRAM M,HILDEBRAND F,FORSLUND S K,et al. Structure and function of the global topsoil microbiome[J]. Nature,2018,560(7717):233-237 [8] HU L,ROBERT C A M,CADOT S. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communication,2018(9):2738 [9] ZHALNINA K,LOUIE K B,HAO Z,et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology,2018(3):470-480 [10] YANG J,DUAN Y,ZHANG R,et al. Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard[J]. Industrial Crops and Products,2020(149):112344 [11] DELGADO-BAQUERIZO M,REITH F,DENNIS P G,et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere[J]. Ecology,2018,99(3):583-596 [12] TENZIN T,DORJEEH T,YIXI Y,et al. Bacterial diversity and network modularity determine alfalfa yield in flood lands[J]. Applied Soil Ecology,2023(192):105101 [13] YUAN M M,GUO X,WU L,et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change,2021,11(4):343-348 [14] ZHENG W,ZHAO Z Y,GONG Q G,et al. Responses of fungal-bacterial community and network to organic inputs vary among different spatial habitats in soil[J]. Soil Biology and Biochemistry,2018(125):54-63 [15] WANG Y,LIU L,LUO Y,et al. Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system[J]. Science of the Total Environment,2020(725):138527 [16] 芦奕晓,牟乐,杨惠敏.豆科与禾本科牧草混播改良土壤的研究进展[J].中国草地学报,2019,41(1):94-100 [17] 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000:30-34 [18] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:274-323 [19] 张君红,王健宇,孟泽昕,等.土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性[J].生态学报,2022,42(7):2542-2558 [20] LI Y,BAO W,BONGERS,et al. Drivers of tree carbon storage in subtropical forests[J]. Science of the Total Environment,2019,654:684-693 [21] NEWMAN M E J. Modularity and community structure in networks[J]. Proceedings of The National Academy of Sciences USA,2006(103):8577 [22] YUAN M M,GUO X,WU L W,et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change,2021,11(4):343-348 [23] TU A,XIE S,ZHENG H,et al. Long-term effects of living grass mulching on soil and water conservation and fruit yield of citrus orchard in south China[J]. Agricultural Water Management,2021(252):106897 [24] WANG R,CAO B,SUN Q,et al. Response of grass interplanting on bacterial and fungal communities in a jujube orchard in Ningxia,northwest China[J]. Heliyon,2020(6):e03489 [25] CUI Y,FANG L,GUO X,et al. Responses of soil bacterial communities,enzyme activities,and nutrients to agricultural-to-natural ecosystem conversion in the loess plateau,China[J]. Journal of Soils and Sediments,2018(19):1427-1440 [26] 林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010:243-262 [27] ZHAO X,HAO C,ZHANG R,et al. Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation[J]. Soil Biology and Biochemistry,2023,185:109146 [28] 刘崇义,靳旭妹,王莹莹,等.生草对关中平原有机猕猴桃园土壤养分及细菌群落的影响[J].草地学报,2021,29(12):2711-2720 [29] HUANG J,GAO K,YANG L,et al. Successional action of Bacteroidota and Firmicutes in decomposing straw polymers in a paddy soil[J]. Environmental Microbiome,2023(18):76 [30] 夏开,邓鹏飞,马锐豪,等.马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J].生态环境学报,2022,31(3):460-469 [31] 李昱龙,韩正敏.嗜麦芽窄食单胞菌在环保和农业生产上的应用[J].生物技术通报,2015,31(8):35-43 [32] 王安林,马瑞,马彦军,等.不同治沙措施对土壤细菌群落多样性及理化性质的影响[J].草地学报,2023,31(5):1359-1367 [33] DELGADO-BAQUERIZO M,OLIVERIO A M,BREWER T E,et al. A global atlas of the dominant bacteria found in soil[J]. Science,2020,369(6501):eaaz4082 [34] GUO B,ZHANG L,SUN H,et al. Microbial co-occurrence network topological properties link with reactor parameters and reveal importance of lowabundance genera[J]. NPJ Biofilms and Microbiomes,2022(8):3 [35] MA B,WANG H,DSOUZA M,et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China[J]. ISME Journal,2016,10(8):1891-1901 [36] SANTOLINI M,BARABASI AL. Predicting perturbation patterns from the topology of biological networks[J]. Proceedings of the National Academy of Sciences,2018(115):E6375-E6383 [37] LIU C,WANG Y,CHEN X,at al. Cover Cropping increases Soil Fungal-Bacterial Community Diversity and Network Complexity in Apple Orchards on the Loess Plateau,China[J]. Frontiers in Environmental Science,2022(10):916288 [38] NEHLS U,DAS A,NEB D. Carbohydrate metabolism in ectomycorrhizal symbiosis[J]. Molecular Mycorrhizal Symbiosis,2016(10):161-178 [39] 苏卫华,李昊明,张春燕,等.供磷水平和根际效应协同影响含碱性磷酸酶基因细菌群落的网络复杂性和稳定性[J].微生物学报,2023,63(7):2776-2790(责任编辑 彭露茜)第32卷 第3期 Vol.32 No. 3草 地 学 报 ACTAAGRESTIASINICA 2024年 3月 |