[1] WANG H,TAKANO T,LIU S K. Screening and evaluation of saline-alkaline tolerant germplasm of rice (Oryza sativa L.) in soda saline-alkali soil[J]. Agronomy Basel,2018,8(10):205 [2] PARK H J,KIM W Y,YUN D J. A new insight of salt stress signaling in plant[J]. Molecules and Cells,2016,39(6):447-459 [3] RENGASAMY P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany,2006,57(5):1017-1023 [4] YANG J,YAO S,WANG X,et al. Halt soil salinization,boost soil productivity[J]. Science,2021,73:30-34 [5] KAIWEN G,ZISONG X,YUZE H,et al. Effects of salt concentration,pH,and their interaction on plant growth,nutrient uptake,and photochemistry of alfalfa (Medicago sativa) leaves[J]. Plant Signaling & Behavior,2020,15(12):1832373 [6] MANSOUR M M F,HASSAN F A S. How salt stress-responsive proteins regulate plant adaptation to saline conditions[J]. Plant Molecular Biology,2022,108(3):175-224 [7] FENG N,YU M,LI Y,et al. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense[J]. Ecotoxicology and Environmental Safety,2021,220:112369 [8] WANG J,ZHANG Y,YAN X,et al. Physiological and transcriptomic analyses of yellow horn (Xanthoceras sorbifolia) provide important insights into salt and saline-alkali stress tolerance[J]. Plos One,2020,15(12):e0244365 [9] ZHANG H,XU Z,GUO K,et al. Toxic effects of heavy metal Cd and Zn on chlorophyll,carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis[J]. Ecotoxicology and Environmental Safety,2020,202:110856 [10] WANG X S,REN H L,WEI Z W,et al. Effects of neutral salt and alkali on ion distributions in the roots,shoots,and leaves of two alfalfa cultivars with differing degrees of salt tolerance[J]. Journal of Integrative Agriculture,2017,16(8):1800-1807 [11] CHEN M,YANG Z,LIU J,et al. Adaptation mechanism of salt excluders under saline conditions and its applications[J]. International Journal of Molecular Sciences,2018,19(11):3668 [12] VERMA D,JALMI S K,BHAGAT P K,et al. A bHLH transcription factor,MYC2,imparts salt intolerance by regulating proline biosynthesis in Arabidopsis[J]. FEBS Journal,2020,287(12):2560-2576 [13] LIU L,LIU D,WANG Z,et al. Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities[J]. Plant Physiology and Biochemistry,2020,154:699-713 [14] ZHANG L,SUN Y,JI J,et al. Flavonol synthase gene MsFLS13 regulates saline-alkali stress tolerance in alfalfa[J]. The Crop Journal,2023,11(4):1218-1229 [15] LEI Y G,HANNOUFA A,YU PQ. The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage[J]. International Journal of Molecular Sciences,2017,18(2):298 [16] SINGER S D,HANNOUFA A,ACHARYA S. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment[J]. Plant Cell and Environment,2018,41(9):1955-1971 [17] 刁婵,王文信. 中国苜蓿草进口贸易格局及其影响因素[J]. 草业科学,2023,40(9):2424-2434 [18] 贾壮壮,谭亚男,管孝艳,等. 宁夏盐碱地成因及分区治理措施综述[J]. 灌溉排水学报,2023,42(5):122-134 [19] LEI Y,XU Y,HETTENHAUSEN C,et al. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms[J]. BMC Plant Biology,2018,18(1):35 [20] MA L,LI X,ZHANG J,et al. MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription[J]. Plant,Cell & Environment,2023,46(12):3887-3901 [21] SONG T,XU H,SUN N,et al. Metabolomic analysis of Alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress[J]. Frontiers in Plant Science,2017,8:1208 [22] YU J,YUAN Y,ZHANG W,et al. Overexpression of an NF-YC2 gene confers alkali tolerance to transgenic alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science,2022,13:960160 [23] 王晓春,杨天辉,王川,等. 混合盐碱胁迫对紫花苜蓿的生长和生理指标的影响[J]. 中国农学通报,2022,38(19):139-145 [24] 张晓磊,刘晓静,齐敏兴,等. 混合盐碱对紫花苜蓿苗期根系特征的影响[J]. 中国生态农业学报,2013,21(3):340-346 [25] WANG Y,WANG J,GUO D,et al. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa)[J]. Plant Physiology and Biochemistry,2021,167:140-152 [26] 赵海明,游永亮,李源,等. 紫花苜蓿资源抗旱性鉴定评价方法研究[J]. 草地学报,2017,25(6):1308-1316 [27] 景芳,师尚礼,南攀等.不同苜蓿品种叶片特征、光合生理特性与产量性状的比较[J].草地学报,2024,32(2):369-377 [28] 武祎,田雨,宋彦涛. 不同盐分对黄花苜蓿早期幼苗生长及离子积累的影响[J]. 中国草地学报,2019,41(4):39-44 [29] 王雪萌,何欣,张涵,等. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报,2022,31(7):197-208 [30] FRYER M J,OXBOROUGH K,MULLINEAUX P M,et al. Imaging of photo-oxidative stress responses in leaves[J]. Journal of Experimental Botany,2002,53(372):1249-1254 [31] GIANNOPOLITIS C N,RIES S K. Superoxide dismutases:I. Occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314 [32] PANDOLFINI T,GABBRIELLI R,COMPARINI C. Nickel toxicity and peroxidase-activity in seedlings of Triticum-aestivum L[J]. Plant Cell and Environment,1992,15(6):719-725 [33] 梁欢,韦宝,陈静,等. 基于叶绿素荧光参数的紫花苜蓿种质苗期抗旱性评价[J]. 草地学报,2020,28(1):45-55 [34] KRAMER D M,JOHNSON G,KIIRATS O,et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research,2004,79(2):209-218 [35] LING L,AN Y,WANG D,et al. Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa[J]. Plant Physiology and Biochemistry,2022,170:146-159 [36] LACOUR T,BABIN M,LAVAUD J. Diversity in xanthophyll cycle pigments content and related nonphotochemical quenching (NPQ) among microalgae:implications for growth strategy and ecology[J]. Journal of Phycology,2020,56(2):245-263 [37] DU B,ZHAO W,AN Y,et al. Overexpression of an alfalfa glutathione S-transferase gene improved the saline-alkali tolerance of transgenic tobacco[J]. Biology Open,2019,8(9):bio043505 [38] KUMAR S,PANDEY A K. Chemistry and biological activities of flavonoids:an overview[J]. The Scientific World Journal,2013,2013:162750 [39] DANGRIT D,SOMPORNPAILIN K. Antioxidant activities of transgenic flower over-expressing FLS and TT8 involving in flavonoid biosynthesis[J]. Applied Mechanics and Materials,2018,879:78-82 [40] STRACKE R,ISHIHARA H,HUEP G,et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. The Plant Journal,2007,50(4):660-677 [41] RAMENENI J J,DHANDAPANI V,PAUL P,et al. F-Box genes in Brassica rapa:genome-wide identification,structural characterization,expressional validation,and comparative analysis[J]. Plant Molecular Biology Reporter,2018,36(3):500-517 [42] STEINHORST L,KUDLA J. How plants perceive salt[J]. Nature,2019,572(7769):318-320 [43] MANSOUR M M F,EMAM M M,SALAMA K H A,et al. Sorghum under saline conditions:responses,tolerance mechanisms,and management strategies[J]. Planta,2021,254(2):24 [44] LIU C,YOUNG A L,STARLING WINDHOF A,et al. Coupled chaperone action in folding and assembly of hexadecameric Rubisco[J]. Nature,2010,463(7278):197-202 [45] ZHOU C,HAN L,PISLARIU C,et al. From model to crop:functional analysis of a STAY-GREEN Gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement[J]. Plant Physiology,2011,157(3):1483-1496 [46] SAKURABA Y,PARK S Y,KIM Y S,et al. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence[J]. Molecular Plant,2014,7(8):1288-1302 [47] GUTTERIDGE S,GATENBY A A. Rubisco synthesis,assembly,mechanism,and regulation[J]. The Plant Cell,1995,7(7):809-819 [48] 刘晶,才华,刘莹,等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较[J]. 草业学报,2013,22(2):250-256 [49] 于明倩,胡亚娜,田雨. 混合盐碱胁迫对紫花苜蓿幼苗生长和生理特性的影响[J]. 黑龙江畜牧兽医,2021,(22):109-112 [50] FANG S,HOU X,LIANG X. Response mechanisms of plants under saline-alkali stress[J]. Frontiers in Plant Science,2021,12:667458 [51] 林霞,郑坚,陈秋夏,等. NaCl胁迫对无柄小叶榕光合作用和抗氧化酶活性的影响[J]. 北京林业大学学报,2011,33(4):70-74 [52] GILL S S,TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry 2010,48(12):909-930 [53] ALI S,TYAGI A,BAE H. ROS interplay between plant growth and stress biology:challenges and future perspectives[J]. Plant Physiology and Biochemistry,2023,203:108032 [54] ZHANG H,LIU X L,ZHANG R X,et al. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.)[J]. Frontiers in Plant Science,2017,8:1580 |