[1] 孙启忠,柳茜,李峰,等. 我国古代苜蓿物种考述[J]. 草业学报,2018,27(8):155-174 [2] 杨富裕. 树立“饲草就是粮食”理念,大力发展饲草产业[J]. 草地学报,2023,31(2):311-313 [3] 李小云,余淑艳,黄薇,等. 覆膜对宁夏干旱区苜蓿种子产量及构成因素的影响[J]. 西北农林科技大学学报(自然科学版),2022,50(2):67-74 [4] 国家林草局国有林场和种苗管理司. 2023年度全国草种供需分析报告[EB/OL]. https://www.forestry.gov.cn/main/586/20221120/215148550687091.html.2022-11-20/2024-3-20 [5] 俞鸿,欧成明,王占军,等. 农艺措施对紫花苜蓿种子产量组分的影响[J]. 草地学报,2021,29(12):2853-2861 [6] 毛培胜,欧成明,贾志程,等. 我国牧草与草坪草种子生产技术的研究进展[J]. 中国草地学报,2023,45(1):1-11 [7] 王琴,李小云,黄淑迪,等. 株行距对宁夏干旱区苜蓿种子产量及构成因素的影响[J]. 中国草地学报,2023,45(8):31-40 [8] 陈涛. 灌溉与硼肥对河西地区紫花苜蓿和红豆草新品系种子产量及质量的影响[D]. 兰州:兰州大学,2023:18-44 [9] NYKIEL M,GIETLER M,FIDLER J,et al. Abiotic stress signaling and responses in plants[J]. Plants (Basel),2023,12(19):3405 [10] LIU H,ZHANG C,YANG J,et al. Hormone modulation of legume-rhizobial symbiosis[J]. Journal of Integrative Plant Biology,2018,60(8):632-648 [11] ZHAO L,LI M,MA X,et al. Transcriptome analysis and identification of abscisic acid and gibberellin-related genes during seed development of alfalfa (Medicago sativa L.)[J]. BMC Genomics,2022,23(1):651 [12] LÓPEZ-BUCIO J S,DUBROVSKY J G,RAYA-GONZLEZ J,et al. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development[J]. Journal of Experimental Botany,2014,65(1):169-183 [13] HU J,WANG Y,FANG Y,et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant,2015,8(10):1455-1465 [14] LIANG G,HE H,LI Y,et al. Molecular mechanism of microRNA396 mediating pistil development in arabidopsis[J]. Plant Physiology and Biochemistry,2014,164(1):249-258 [15] GUPTA P K,KULWAL P L,JAISWAL V. Association mapping in plants in the post-GWAS genomics era[J]. Advances in Genetics,2019(104):75-154 [16] 周艳春,刘建,徐安凯,等. 93份无芒雀麦种质资源产量性状的全基因组关联分析[J]. 草地学报,2020,28(3):623-632 [17] CHEN Y,NIU S,DENG X,et al. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing[J]. BMC Plant Biology,2023,23(1):1-19 [18] LIN S,MEDINA C A,NORBERG O S,et al. Genome-wide association studies identifying multiple loci associated with alfalfa forage quality[J]. Frontiers in Plant Science,2021(12):1-15 [19] YU L X,ZHENG P,BHAMIDIMARRI S,et al. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science,2017(8):1-13 [20] YU L X. Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping[J]. Frontiers in Plant Science,2017(8):1-11 [21] MEDINA C A,HAWKINS C,LIU X P,et al. Genome-wide association and prediction of traits related to salt tolerance in autotetraploid alfalfa (Medicago sativa L.)[J]. International Journal of Molecular Sciences,2020,21(9):3361 [22] 严勇亮,张恒,张金波,等. 春小麦主要籽粒性状的全基因组关联分析[J]. 麦类作物学报,2022,42(10):1182-1191 [23] 杨丹丹,李小林,吕莹,等. 云南水稻新品系重要农艺性状全基因组关联分析[J]. 西南农业学报,2023,36(9):1825-1834 [24] CHEN H,ZENG Y,YANG Y,et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa[J]. Nature Communications,2020,11(1):1-11 [25] CHEN L,HE F,LONG R,et al. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development[J]. Journal of Integrative Plant Biology,2021,63(11):1937-1951 [26] HUANG M,LIU X,ZHOU Y,et al. BLINK:a package for the next level of genome-wide association studies with both individuals and markers in the millions[J]. Gigascience,2019,8(2):1-12 [27] XU C,WU T,YUAN S,et al. Can soybean cultivars with larger seed size produce more protein,lipids,and seed yield? A meta-analysis[J]. Foods,2022,11(24):40-59 [28] AMBIKA S,MANONMANI V,SOMASUNDARAM G. Review on effect of seed size on seedling vigour and seed yield[J]. Research Journal of Seed Science,2014,7(2):31-38 [29] 尹淑英. 紫花苜蓿的种子功能性状及SSR分子标记的遗传多样性[D]. 兰州:兰州大学,2018:19-26 [30] WANG J,ZHANG Z. GAPIT version 3:boosting power and accuracy for genomic association and prediction[J]. Genomics Proteomics Bioinformatics,2021,19(4):629-640 [31] MORRIS E R,CHEVALIER D,WALKER J C. DAWDLE,a forkhead-associated domain gene,regulates multiple aspects of plant development[J]. Plant Physiology,2006,141(3):932-941 [32] KAPAZOGLOU A,ENGINEER C,DROSOU V,et al. The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development[J]. BMC Plant Biology,2012,12:166 [33] LAFON-PLACETTE C,KÖHLER C. Embryo and endosperm,partners in seed development[J]. Current Opinion in Plant Biology,2014(17):64-69 [34] ZHANG J,ZHANG Z,ZHANG R,et al. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat[J]. Plant Biotechnology Journal,2024,22(1):200-215 [35] HUANGFU L,CHEN R,LU Y,et al. OsCOMT,encoding a caffeic acid O-methyltransferase in melatonin biosynthesis,increases rice grain yield through dual regulation of leaf senescence and vascular development[J]. Plant Biotechnology Journal,2022,20(6):1122-1139 [36] BAJAJ D,SAXENA M S,KUJUR A,et al,Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea[J]. Journal of Experimental Botany,2015,66(5):1271-1290(责任编辑 刘婷婷)第32卷 第8期 Vol.32 No. 8草 地 学 报 ACTAAGRESTIASINICA 2024年 8月 |