中文  |  English

菌物学报, 2023, 42(5): 1175-1184 doi: 10.13346/j.mycosystema.220281

研究论文

超高效液相色谱-电喷雾串联四级杆质谱鉴定灵芝中脂质成分

郝宏伟#, 陈意琪#, 何姣, 李娜, 原成林, 刘勇男,,*, 刘高强,,*

中南林业科技大学林业生物技术湖南省重点实验室 森林资源生物技术湖南省国际科技创新合作基地 岳麓山实验室微生物品种创制中心,湖南 长沙 410004

Identification of lipid components in Ganoderma lingzhi by ultra high performance liquid chromatography-electrospray tandem quadrupole mass spectrometry

HAO Hongwei#, CHEN Yiqi#, HE Jiao, LI Na, YUAN Chenglin, LIU Yongnan,,*, LIU Gaoqiang,,*

Hunan Provincial Key Laboratory of Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, Hunan, China

收稿日期: 2022-08-1   接受日期: 2022-08-26  

基金资助: 国家自然科学基金(31900027)
国家自然科学基金(31772374)
国家自然科学基金(32071673)
中国博士后科学基金(2020M682601)
湖南省科技创新计划资助(2020RC2059)
湖南省科技创新计划资助(2021RC4063)
湖南省自然科学基金(2020JJ5972)
湖南省教育厅科学研究项目(22A0188)
湖南省教育厅科学研究项目(18B167)

Corresponding authors: *LIU Yongnan, ynliu@csuft.edu.cn; gaoliuedu@csuft.edu.cn

First author contact: #Co-first author

Received: 2022-08-1   Accepted: 2022-08-26  

Fund supported: National Natural Science Foundation of China(31900027)
National Natural Science Foundation of China(31772374)
National Natural Science Foundation of China(32071673)
China Postdoctoral Science Foundation(2020M682601)
Science and Technology Innovation Program of Hunan Province(2020RC2059)
Science and Technology Innovation Program of Hunan Province(2021RC4063)
Natural Science Foundation of Hunan Province(2020JJ5972)
Scientific Research Fund of Hunan Provincial Education Department, China(22A0188)
Scientific Research Fund of Hunan Provincial Education Department, China(18B167)

作者简介 About authors

ORCID:LIUYongnan(0000-0002-4005-0868) , E-mail:ynliu@csuft.edu.cn

ORCID:LIUGaoqiang(0000-0001-9620-1752) , E-mail:gaoliuedu@csuft.edu.cn

摘要

脂质是灵芝重要活性成分之一,但目前对灵芝胞内脂质成分的构成研究甚少。本研究采用UPLC-ESI-MS/MS技术,对灵芝发酵菌体的胞内脂质构成进行分析。结果显示,灵芝细胞中共鉴定到296种脂质,其中甘油酯112种、磷脂148种、鞘脂34种和甾醇2种;甘油酯和磷脂分别占总脂质的44.70%和38.06%,鞘脂和甾醇分别占总脂质的17.08%和0.16%。分析甘油酯中主要成分为甘油三酯,占甘油酯总含量的67.36%;磷脂中主要成分为磷脂酰乙醇胺,占磷脂总含量的62.64%;鞘脂中主要成分为神经酰胺,占鞘脂总量的60.33%;此外,本研究检测出27种游离脂肪酸,其中20种为不饱和脂肪酸,相对含量为65.59%;7种为饱和脂肪酸,相对含量为34.41%。本研究系统性地分析了灵芝细胞中的脂质构成,为进一步开展灵芝细胞中脂质相关研究奠定基础。

关键词: 灵芝; 脂质组学; 高效液相色谱-串联质谱

Abstract

Lipids are one of the most important active components of Ganoderma lingzhi. However, there are few studies on the composition of intracellular lipids in G. lingzhi. Here, the intracellular lipid composition was analyzed by UPLC-ESI-MS/MS technique from G. lingzhi mycelium cell. The results showed that 296 kinds of lipids were identified in G. lingzhi cells, including 112 glycerides, 148 phospholipids, 34 sphingolipids and 2 sterols. Glycerides and phospholipids account for 44.70% and 38.06% of the total lipids respectively. Sphingolipids and sterols account for 17.08% and 0.16% respectively. The main component of glycerides is triglyceride, accounting for 67.36% of the total glycerides. The main component of phospholipids is phosphatidylethanolamine, accounting for 62.64% of the total phospholipids. The main component of sphingolipids is ceramide, accounting for 60.33% of the total sphingolipids. In addition, 27 fatty acids were detected, in which 20 were unsaturated fatty acids, with a relative content of 65.59%, and 7 were saturated fatty acids, with a relative content of 34.41%. This study laid a foundation for further study of lipids in G. lingzhi cells.

Keywords: Ganoderma lingzhi; lipidomics; high performance liquid chromatography-tandem mass spectrometry

PDF (761KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郝宏伟, 陈意琪, 何姣, 李娜, 原成林, 刘勇男, 刘高强. 超高效液相色谱-电喷雾串联四级杆质谱鉴定灵芝中脂质成分[J]. 菌物学报, 2023, 42(5): 1175-1184 doi:10.13346/j.mycosystema.220281

HAO Hongwei, CHEN Yiqi, HE Jiao, LI Na, YUAN Chenglin, LIU Yongnan, LIU Gaoqiang. Identification of lipid components in Ganoderma lingzhi by ultra high performance liquid chromatography-electrospray tandem quadrupole mass spectrometry[J]. Mycosystema, 2023, 42(5): 1175-1184 doi:10.13346/j.mycosystema.220281

灵芝Ganoderma lingzhi S.H. Wu, Y. Cao & Y.C. Dai过去被误认为Ganoderma lucidum (Curtis) P. Karst,别名赤芝、木灵芝和灵芝草,古称“瑞草”(戴玉成等 2013, 2021),是我国医药宝库中的一颗璀璨明珠,早在两千多年前就开始采集利用,古籍中记载灵芝具有延年益寿、扶正固本及滋补身体等多种功效(Zhou et al. 2012;Wu et al. 2019),在中国、东北亚和东南亚地区得到广泛使用。现代药理学研究表明,灵芝具有降血糖、抗肿瘤、保肝及延缓衰老等药理作用(Yang et al. 2019),已被收录到《中华人民共和国药典》以及《美国草药药典与治疗概要》中(Wang & Ng 2006)。灵芝对人类健康的作用也日益受到国内外专家的重视,进一步解析和开发灵芝的药理作用是当前国内外研究的一个热点。

目前,灵芝活性成分鉴定研究主要集中在三萜类和多糖类化合物(张婧等 2020;滕李铭等 2021;王琼等 2021),随着研究深入,发现灵芝中的脂质、多肽、生物碱以及甾醇类等物质也具有多种重要生物活性(Ye et al. 2018;黄佳等 2022)。灵芝孢子内脂质具有保肝护肝、抑制肝癌等多种药理和营养功能(刘昕等 2000;袁剑刚等 2000)。磷脂作为细胞膜的基本支架,参与细胞跨膜信号转导;鞘脂在真菌胁迫应激、菌丝形成、孢子萌发和脂质稳态中发挥了重要的作用(Santos et al. 2018)。

然而灵芝以及其他真菌中脂质组分的相关研究还鲜有报道,主要原因是脂质种类繁多、结构复杂且含量差异大,传统的薄层色谱和气相色谱技术难以达到有效的分离与鉴定(吴邦富等 2018)。随着脂质组学技术发展和不断完善,脂质组学已被广泛应用于脂质构成鉴定、疾病诊断、药物靶点及先导化合物的发现等方面(陆姝欢等 2007)。章丽等(2021)运用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱分析了在正负离子模式下嗜热链球菌发酵乳中脂质的构成;谢宏宇(2016)等通过对卵巢癌患者和对照患者的血液脂质组学数据进行分析,筛选出可作为诊断卵巢癌生物标志物的8个差异脂质;Sewell et al. (2012)通过质谱分析法和稳定同位素标记法分析了巨噬细胞鞘脂类和磷脂类成分,探究了脂质构成对克罗恩病的影响。

本研究基于超高效液相色谱-电喷雾串联四极杆法(ultra-high-performance liquid chromatography electrospray ionization tandem mass spectrometry, UPLC-ESI-MS/MS)技术,鉴定了灵芝细胞中甘油酯、磷脂、鞘脂和固醇4类脂质,以及游离脂肪酸成分的组成和占比,系统性分析了灵芝细胞脂质组分,为后续灵芝中脂质有效成分的研究奠定基础。

1 材料与方法

1.1 材料、试剂和主要仪器

1.1.1 菌种

灵芝CGMCC 18819,购于中国普通微生物菌种保藏管理中心。

1.1.2 培养基

斜面培养基(g/L):马铃薯200,葡萄糖10,琼脂粉20,硫酸镁1.5,磷酸二氢钾3.0,VB1 0.05。种子培养基(g/L):葡萄糖35,蛋白胨5,酵母膏2.5,磷酸二氢钾1,硫酸镁0.5,VB1 0.05,玉米粉5。发酵培养基(g/L):蛋白胨5.6,葡萄糖38,磷酸氢二钾1.53,VB1 0.05,初始pH 7.0。

1.1.3 试剂

乙腈(色谱纯),Fisher公司;异丙醇,乙酸,甲酸铵,葡萄糖,琼脂粉,硫酸镁,磷酸二氢钾,VB1,酵母膏,蛋白胨(均为优级纯)。

1.1.4 仪器和设备

超高效液相色谱(ultra performance liquid chromatography,UPLC; Shim-pack UFLC SHIMADZU CBM30A, https://www.shimadzu.com);串联质谱(tandem mass spectrometry,MS/MS,QTRAP® 4500+, https://sciex.com);离心机;冷冻干燥仪。

1.2 灵芝发酵培养

灵芝斜面菌种接种至种子培养基中,28 ℃、160 r/min黑暗培养7 d,以10%接种量转接至发酵培养基(装液量100 mL/250 mL三角瓶),25.8 ℃、146 r/min黑暗培养7 d,获得灵芝菌丝体样品。

1.3 脂质成分提取

灵芝菌丝体样品采用冷冻干燥仪进行冷冻干燥后研磨,称量粉末50 mg,加入1 mL异丙醇涡旋混匀,4 ℃超声提取10 min。4 ℃、12 000 r/min离心10 min,取上清液800 μL低温浓缩干燥,加入200 μL异丙醇复溶后用于液相色谱质谱检测分析。

1.4 色谱质谱条件

色谱条件:Accucore C30色谱柱(2.1 mm× 100 mm,2.6 μm),柱温40 ℃;流速0.35 mL/min;进样量3 μL。流动相A:水-乙腈(40:60,体积比),含10 mmol/L甲酸铵和0.04%乙酸;流动相B:异丙醇-乙腈(90:10,体积比),含10 mmol/L甲酸铵和0.04%乙酸;梯度洗脱条件:0-2 min,80% A,20% B;2-4 min,70% A,30% B;4-9 min,35% A,65% B;9-14 min,15% A,85% B;14-15.5 min,10% A,90% B;15.5-17.7 min,5% A,95% B;17.7-20 min,80% A,20% B。

质谱条件:电喷雾离子源(electrospray ionization,ESI)温度550 ℃,质谱电压5 500 V (positive),−4 500 V (negative),离子源气体Ⅰ(GS Ⅰ) 55 psi,气体Ⅱ(GS Ⅱ) 60 psi,气帘气(curtain gas,CUR) 25 psi,碰撞诱导电离(collision-activated dissociation, CAD)参数设置为高。在三重四极杆(Qtrap)中,每个离子对是根据优化的去簇电压(declustering potential, DP)和碰撞能(collision energy, CE)进行扫描检测。采集范围为m/z 120-1 800,正负离子同时采集;一级质谱分辨率为70 000,二级质谱分辨率为17 500。

1.5 数据分析

使用Lipid Search软件,读取LC-MS/MS导出的raw格式原始数据,根据样本中的母离子和多级质谱数据,鉴定其中脂质分子结构及其正负离子的加合模式;物质相对含量根据色谱峰面积获得。本研究脂质组学鉴定与武汉康之代谢生物科技有限公司合作完成。

2 结果与分析

2.1 灵芝中脂质成分概述

采用UPLC-ESI-MS/MS对灵芝中脂质组分进行分析,在正、负离子模式下检测到的脂质组分见附表1、附表2 (国家微生物科学数据中心NMDCX0000166),正离子模式下检测到脂质成分共计225种,在负离子模式下检测到脂质成分71种。

统计鉴定结果表明,灵芝细胞中含有甘油酯、磷脂、鞘脂和甾醇4大类脂质。其中甘油酯占总脂质含量最多,为44.70%,磷脂和鞘脂分别为38.06%和17.08%,甾醇占比最少,为0.16% (图1)。

图1

图1   灵芝细胞中主要脂质成分占比情况

Fig. 1   Proportion of main lipid components in Ganoderma lingzhi cells.


2.2 灵芝中甘油酯的成分构成

甘油酯均在正离子模式下被检测(附表1,国家微生物科学数据中心NMDCX0000166),主要含有甘油三酯(triacylglycerol, TG)、甘油二酯(diacylglycerol, DG)和单甘油酯(monoglyceride, MG)类,TG为灵芝细胞中最主要的甘油酯,TG、DG和MG的相对含量分别为67.36%、31.87%和0.77% (图2A),其中TG共鉴定到75种、DG共鉴定到31种,MG共鉴定到6种(附表1,国家微生物科学数据中心NMDCX0000166)。

图2

图2   灵芝细胞中甘油酯质占比情况

A:甘油酯主要成分占比. B:甘油三酯亚成分占比. C:甘油二酯亚成分占比. D:单甘油酯亚成分占比

Fig. 2   Proportion of glycerolipid content in Ganoderma lingzhi cells.

A: The proportion of the main components in triglyceride. B: The proportion of TG subcomponents. C: The proportion of DG subcomponents. D: The proportion of MG subcomponents.


TG亚成分分析表明,TG (16:0/18:2/20:4)、TG (18:1/18:2/18:2)、TG (18:1/18:1/18:2)、TG (16:1/18:2/18:2)和TG (16:0/18:2/18:2)占总TG含量较多,分别为15.06%、11.77%、10.97%、9.98%和7.62% (图2B)。

在灵芝细胞中共检测到的31种DG亚成分,其中DG (18:2/18:2)、DG (16:0/18:2)、DG (16:1/18:2)、DG (18:0/18:2)和DG (16:0/16:0)占总DG含量较多,分别为28.20%、17.20%、15.26%、9.26%和7.40% (图2C)。

分析MG亚成分发现,MG (16:0)和MG (18:0)占总MG含量较多,分别为MG总含量的57.48%和37.94% (图2D)。

2.3 灵芝中磷脂的成分构成

灵芝细胞中检测到的磷脂可分为溶血型磷脂(lysophospholipid,也称L型磷脂)和非溶血型磷脂(non-lysophospholipid),其中溶血型磷脂的相对含量占磷脂总量的16.90%,非溶血型磷脂的相对含量占磷脂总量的83.10% (图3A)。

图3

图3   灵芝细胞中磷脂占比情况

A:溶血磷脂与非溶血磷脂占比. B:溶血磷脂主要成分占比. C:非溶血磷脂主要成分占比. D:PE亚成分占比. E:PA亚成分占比. F:PC亚成分占比. G:PG亚成分占比. H:PI亚成分占比. I:PS亚成分占比

Fig. 3   Proportion of phospholipid content in Ganoderma lingzhi cells.

A: The ratio of lysophospholipid and non-lysophospholipid. B: The proportion of the main components in lysophospholipid. C: The proportion of the main components in non-lysophospholipid. D: The proportion of PE subcomponents. E: The proportion of PA subcomponents. F: The proportion of PC subcomponents. G: The proportion of PG subcomponents. H: The proportion of PI subcomponents. I: The proportion of PS subcomponents.


2.3.1 灵芝中溶血型磷脂的成分构成

灵芝细胞中共检测到的6类L型磷脂,占比较多的为溶血磷脂酸(lysophosphatidic acid, LPA)、溶血磷脂酰乙醇胺(lysophosphatidylethanolamine, LPE)和溶血磷脂酰胆碱(lysophosphatidylcholines, LPC)分别占总溶血型磷脂含量的52.27%、38.08%和5.47%,此外,在灵芝细胞中还检测到少量溶血磷脂酰甘油(lysophosphatidylglycerol, LPG)、溶血磷脂酰肌醇(lysophosphatidylinositol, LPI)和溶血磷脂酰丝氨酸(lysophosphatidylserine, LPS),占总溶血型磷脂含量之和为4.18% (图3B)。

2.3.2 灵芝中非溶血型磷脂的成分构成

灵芝细胞中共检测到的6类非溶血型磷脂,占比较多的为磷脂酰乙醇胺(phosphatidylethanolamine, PE)、磷脂酸(phosphatidic acid, PA)和磷脂酰胆碱(phosphatidylcholine, PC),分别占总非溶血型磷脂含量的62.64%、18.14%和10.68%;其他3类非溶血型磷脂为磷脂酰丝氨酸(phosphatidylserine, PS)、磷脂酰肌醇(phosphoinositides, PI)和磷脂酰甘油(phosphatidylglycerol, PG),共计占总非溶血型磷脂含量的8.54% (图3C)。

进一步分析6类非溶血型磷脂亚成分发现,灵芝细胞中共含有30种PE种类(附表1、附表2,国家微生物科学数据中心NMDCX0000166),其中PE (18:1/16:1)、PE (18:2/18:2)、PE (16:0/18:1)、PE (16:1/18:2)和PE (18:2/14:0)占比较高,分别占总PE含量的41.52%、24.31%、13.04%、9.62%和3.36% (图3D)。

从灵芝细胞中共检测出10种PA亚成分(附表1,国家微生物科学数据中心NMDCX0000166),其中PA (18:2/18:2)和PA (16:0/18:2)占比较高,分别占PA含量的58.81%和40.34% (图3E)。

在灵芝样品中共检测出30种PC亚成分(附表1、附表2,国家微生物科学数据中心NMDCX0000166),其中PC (16:0/18:3)相对含量最多,为47.17%,其余含量较高的成分为PC (14:0/18:2)、PC (18:1/24:1)、PC (18:2/18:2)和PC (16:0/20:5),其相对含量分别为12.23%、8.46%、6.01%和5.90% (图3F)。

灵芝细胞中PG、PI和PS含量较少,从样品中共检测出14种PG、11种PI和12种PS亚成分(附表1、附表2,国家微生物科学数据中心NMDCX0000166)。PG亚成分中含量较高的为PG (16:0/18:1)和PG (18:1/18:1),其相对含量分别为23.43%和21.56% (图3G)。PI亚成分中相对含量最高的为PI (18:2/16:0),占PI总量的48.30% (图3H)。PS亚成分中PS (18:2/16:0)相对含量最高,为73.72% (图3I)。

2.4 灵芝中鞘脂的成分构成

灵芝细胞中检测到鞘脂成分为神经酰胺(ceramide, Cer)、鞘磷脂(sphingomyelin, SM)、鞘氨醇(sphingosine, Sph)和糖鞘脂(glycosphingolipids, GSL),Cer和SM相对含量较多,分别为60.33%和31.49%,Sph和GSL相对含量较少,分别为7.25%和 0.93% (图4A)。

图4

图4   灵芝细胞中鞘脂含量占比情况

A:鞘脂主要成分占比. B:神经酰胺亚成分占比. C:鞘磷脂亚成分占比. D:鞘氨醇亚成分占比. E:糖鞘脂亚成分占比

Fig. 4   Proportion of sphingolipids in Ganoderma lingzhi cells.

A: The proportion of the main components in sphingolipids. B: The proportion of Cer subcomponents. C: The proportion of SM subcomponents. D: The proportion of Sph subcomponents. E: The proportion of GSL subcomponents.


分析鞘脂亚成分发现,灵芝中共检测出19种Cer亚成分、7种SM亚成分、3种Sph亚成分和5种GSL亚成分(附表2,国家微生物科学数据中心NMDCX0000166)。

Cer亚成分中Cer (d18:1/16:1)、Cer (d18:0/ 18:0)、Cer (d18:0/16:0)、Cer (d18:1/18:0)和Cer (d18:1/16:0)含量较高,其相对含量分别为30.34%、21.48%、20.51%、10.08%和9.06%。其余检测到一些含量较少的神经酰胺亚成分,相对含量之和为8.53% (图4B)。

灵芝细胞中检测到的SM亚成分中,91.49%为SM (d18:2/22:1),6.50%为SM (d18:1/ 20:1) (图4C)。在灵芝细胞的Sph亚成分中,Sph (d18:2)含量最多,占比为53.96% (图4D)。灵芝细胞中GSL亚成分中占比最多的是GSL (d18:1/16:1),相对含量为87.01% (图4E)。

2.5 灵芝中脂质成分的游离脂肪酸构成

本研究共检测出27种游离脂肪酸(附表3,国家微生物科学数据中心NMDCX0000166),其中20种为不饱和脂肪酸(unsaturated fatty acids, UFA),相对含量为65.59%;7种为饱和脂肪酸(saturated fatty acids, SFA),相对含量为34.41% (图5A)。在饱和脂肪酸中,占比较多的为棕榈酸(16:0)、硬脂酸(18:0)、花生酸(20:0)和二十四烷酸(24:0),其占比分别为50.33%、16.24%、13.25%和12.23% (图5B)。在不饱和脂肪酸中,占比较多的为亚油酸(18:2)、油酸(18:1)和棕榈油酸(16:1),其相对含量分别为34.40%、24.47%和15.05% (图5C)。

图5

图5   灵芝细胞中脂肪酸占比情况

A:饱和脂肪酸和不饱和脂肪酸占比. B:饱和脂肪酸亚成分占比. C:不饱和脂肪酸亚成分占比

Fig. 5   Proportion of fatty acid in Ganoderma lingzhi cells.

A: The ratio of UFA and SFA. B: The proportion of SFA subcomponents. C: The proportion of UFA subcomponents.


3 讨论

脂质是人类主要营养成分,食药用真菌是人类摄取脂质营养的重要来源之一,但在名贵的食药用真菌灵芝中开展脂质成分鉴定研究还鲜有报道。本研究采用UPLC-ESI-MS/MS技术,对灵芝细胞中的脂质构成进行了系统性鉴定与分析,结果共鉴定到296种脂质,其中甘油酯112种,磷脂148种,鞘脂34种,甾醇2种,以及游离脂肪酸27种,为灵芝的营养功能和脂质代谢后续相关研究奠定基础。

甘油酯在动物细胞中具有多种生理活性和营养功能。在人体中,中碳链脂肪酸TG可通过改善胰岛素的分泌来调节血液中葡萄糖的含量,长碳链脂肪酸TG则最终将转变为脂肪组织储存于体内,以供能量的需要(Han et al. 2007);在大鼠中,中碳链膳食DG可以降低血清中的TG,抑制脂类物质在主动脉膜上的堆积,具有预防和治疗脂肪肝的作用,对治疗动脉粥样硬化也有一定疗效(Hara et al. 1993)。本研究发现,灵芝细胞中,中碳链脂肪酸TG (16:10/18:2/20:4)、TG (18:1/18:2/18:2)和TG (18:1/18:1/18:2)占总灵芝TG含量较多,暗示灵芝在改善胰岛素分泌方面具有潜力。中碳链脂肪酸DG (18:2/18:2)、DG (16:0/18:2)、DG (16:1/18:2)和DG (18:0/18:2)占总灵芝DG含量较多,暗示灵芝在预防脂肪肝和动脉粥样硬化等疾病方面具有潜力。

目前在双孢蘑菇、平菇和金针菇等食药用真菌中,已初步开展了脂质成分鉴定研究,但鉴定类别上主要集中在脂肪酸类别上,缺乏全面系统的脂质成分分析。在双孢蘑菇中,采用了气相色谱方法发现,双孢蘑菇中所含不饱和脂肪酸居多,主要为亚油酸(18:2) (Necmettin et al. 2006)。在平菇中,采用气相色谱方法,鉴定到不饱和脂肪酸居多,最主要的脂肪酸成分为油酸(18:1)和亚油酸(18:2) (Cohen et al. 2014)。在金针菇中,通过气相色谱串联质联方法,鉴定到不饱和脂肪酸居多,主要的脂肪酸成分为亚油酸(18:2) (Kwang et al. 2011)。本研究鉴定到灵芝中游离的不饱和脂肪酸多于饱和脂肪酸,且主要脂质成分为亚油酸(18:2)和油酸(18:1),体现了食药用菌脂肪酸比例的一致性。并且,不同食药用菌的脂肪酸成分分析结果表明,食用菌总脂肪含量的特点是不饱和脂肪酸比例高,大多数情况下以亚油酸和油酸为主(Sande et al. 2019)。

脂肪酸是多种脂质的结构单元,脂肪酸的长度以及不饱和度,会导致脂质功能的差异(Burdge & Calder 2015)。长期摄入过量饱和脂肪酸会产生凝血、炎症和胰岛素抵抗等不良影响(Eguchi et al. 2012),尤其是月桂酸(12:0)、肉豆蔻酸(14:0)和棕榈酸(16:0)等,会增加心血管疾病、冠心病和Ⅱ型糖尿病的风险(Chowdhury et al. 2014)。相比于饱和脂肪酸,不饱和脂肪酸被认为是更加健康的。摄入不饱和脂肪酸可以降低血液胆固醇、调节细胞生理活动和显著降低冠心病的患病率(Hossain et al. 2003;Jakobsen et al. 2009)。本研究发现,在灵芝细胞中,不饱和脂肪酸占总脂肪酸的65.59%,表明灵芝脂质成分对人体健康有益。

本研究基于脂质组学对灵芝胞内脂质成分进行系统性分析,对于全面解析灵芝脂质构成、挖掘灵芝的药用价值和功能特性具有重要指导意义,也可为灵芝的利用以及新型药品的开发提供参考。

参考文献

Burdge GC, Calder PC, 2015.

Introduction to fatty acids and lipids

World Review of Nutrition and Dietetics, 112(112): 1-16

[本文引用: 1]

Chowdhury R, Warnakula S, Kunutsor S, 2014.

Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis

Annals of Internal Medicine, 160(6): 398-406

DOI:10.7326/M13-1788      PMID:24723079      [本文引用: 1]

Guidelines advocate changes in fatty acid consumption to promote cardiovascular health.To summarize evidence about associations between fatty acids and coronary disease.MEDLINE, Science Citation Index, and Cochrane Central Register of Controlled Trials through July 2013.Prospective, observational studies and randomized, controlled trials.Investigators extracted data about study characteristics and assessed study biases.There were 32 observational studies (530,525 participants) of fatty acids from dietary intake; 17 observational studies (25,721 participants) of fatty acid biomarkers; and 27 randomized, controlled trials (103,052 participants) of fatty acid supplementation. In observational studies, relative risks for coronary disease were 1.02 (95% CI, 0.97 to 1.07) for saturated, 0.99 (CI, 0.89 to 1.09) for monounsaturated, 0.93 (CI, 0.84 to 1.02) for long-chain ω-3 polyunsaturated, 1.01 (CI, 0.96 to 1.07) for ω-6 polyunsaturated, and 1.16 (CI, 1.06 to 1.27) for trans fatty acids when the top and bottom thirds of baseline dietary fatty acid intake were compared. Corresponding estimates for circulating fatty acids were 1.06 (CI, 0.86 to 1.30), 1.06 (CI, 0.97 to 1.17), 0.84 (CI, 0.63 to 1.11), 0.94 (CI, 0.84 to 1.06), and 1.05 (CI, 0.76 to 1.44), respectively. There was heterogeneity of the associations among individual circulating fatty acids and coronary disease. In randomized, controlled trials, relative risks for coronary disease were 0.97 (CI, 0.69 to 1.36) for α-linolenic, 0.94 (CI, 0.86 to 1.03) for long-chain ω-3 polyunsaturated, and 0.89 (CI, 0.71 to 1.12) for ω-6 polyunsaturated fatty acid supplementations.Potential biases from preferential publication and selective reporting.Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.British Heart Foundation, Medical Research Council, Cambridge National Institute for Health Research Biomedical Research Centre, and Gates Cambridge.

Cohen N, Cohen J, Asatiani MD, Varshney VK, Yu HT, Yang YC, Li YH, Mau JL, Wasser SP, 2014.

Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary- medicinal higher basidiomycetes mushrooms

International Journal of Medicinal Mushrooms, 16(3): 273-291

DOI:10.1615/IntJMedMushr.v16.i3      URL     [本文引用: 1]

Dai YC, Cao Y, Zhou LW, Wu SH, 2013.

Notes on the nomenclature of the most widely cultivated Ganoderma species in China

Mycosystema, 32(6): 947-952 (in Chinese)

Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J, 2021.

Diversity and systematics of the important macrofungi in Chinese forests

Mycosystema, 40: 770-805 (in Chinese)

Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T, Nagai R, 2012.

Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation

Cell Metabolism, 15(4): 518-533

DOI:10.1016/j.cmet.2012.01.023      PMID:22465073      [本文引用: 1]

Consumption of foods high in saturated fatty acids (FAs) as well as elevated levels of circulating free FAs are known to be associated with T2D. Though previous studies showed inflammation is crucially involved in the development of insulin resistance, how inflammation contributes to β cell dysfunction has remained unclear. We report here the saturated FA palmitate induces β cell dysfunction in vivo by activating inflammatory processes within islets. Through a combination of in vivo and in vitro studies, we show β cells respond to palmitate via the TLR4/MyD88 pathway and produce chemokines that recruit CD11b(+)Ly-6C(+) M1-type proinflammatory monocytes/macrophages to the islets. Depletion of M1-type cells protected mice from palmitate-induced β cell dysfunction. Islet inflammation also plays an essential role in β cell dysfunction in T2D mouse models. Collectively, these results demonstrate a clear mechanistic link between β cell dysfunction and inflammation mediated at least in part via the FFA-TLR4/MyD88 pathway.Copyright © 2012 Elsevier Inc. All rights reserved.

Han JR, Deng B, Sun J, Jian RH, Deng B, Jing S, Chao GC, Corkey BE, Kirkland JL, Jing M, Wen G, 2007.

Effects of dietary medium-chain triglyceride on weight loss and insulin sensitivity in a group of moderately overweight free-living type 2 diabetic Chinese subjects

Metabolism, 56(7): 985-991

DOI:10.1016/j.metabol.2007.03.005      URL     [本文引用: 1]

Hara K, Onizawa K, Honda H, 1993.

Comparisons of glucose and lipid metabolism in rats fed diacylglycerol and triacylglycerol

Annals of Nutrition and Metabolism, 37: 185-191

PMID:8215235      [本文引用: 1]

The effects of dietary diacylglycerol consisting of 1,3 (65.2%) and 1,2 species (32.6%) and triacylglycerol (rapeseed oil) on the serum and hepatic lipid profiles were compared in the rat. The fatty acid composition was similar between these dietary lipids. The dietary acylglycerols were added to the experimental diets so as to provide the same amounts of fatty acids (9.39%). Dietary diacylglycerol compared with triacylglycerol significantly reduced concentrations of serum triacylglycerol at 17 and 34 days of the feeding periods without influencing those of phospholipid and cholesterol. There were no significant differences in the concentrations of hepatic triacylglycerol, cholesterol and phospholipid between the two groups of rats at 34 days of the feeding period. In the second trial, triacylglycerol in the experimental diet was replaced by varying amounts of diacylglycerol while maintaining the fatty acid contents (9.39%). After 14 days of the feeding period, significant reductions in serum triacylglycerol levels were confirmed in the groups of rats fed the diets in which diacylglycerol fatty acids supplied more than 50% (50, 75 and 100%) of total dietary fatty acids. Thus, it was confirmed that dietary diacylglycerol compared with triacylglycerol exerts a potent serum triacylglycerol-lowering effect in the rat.

Hossain S, Hashimoto M, Choudhury EK, Alam N, Hussain S, Hasan M, Choudhury SK, Mahmud I, 2003.

Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats

Clinical and Experimental Pharmacology and Physiology, 30(7): 470-475

PMID:12823261      [本文引用: 1]

1. The effects of edible oyster mushroom Pleurotus ostreatus on plasma and liver lipid profiles and on the plasma total anti-oxidant status were estimated in hyper- and normocholesterolaemic Long Evans rats. 2. The feeding of 5% powder of the fruiting bodies of P. ostreatus mushrooms to hypercholesterolaemic rats reduced their plasma total cholesterol by approximately 28%, low-density lipoprotein-cholesterol by approximately 55%, triglyceride by approximately 34%, non-esterified fatty acid by approximately 30% and total liver cholesterol levels by > 34%, with a concurrent increase in plasma high-density lipoprotein-cholesterol concentration of > 21%. However, these effects were not observed in mushroom-fed normocholesterolaemic rats. 3. Mushroom feeding significantly increased plasma fatty acid unsaturation in both normo- and hypercholesterolaemic rats. 4. Plasma total anti-oxidant status, as estimated by the oxidation of 2,2'-azino-bis-[3-ethylbenz-thiazoline-6-sulphonic-acid], was significantly decreased in mushroom-fed hypercholesterolaemic rats, concomitant with a decrease in plasma total cholesterol. 5. The present study suggests that 5% P. ostreatus supplementation provides health benefits, at least partially, by acting on the atherogenic lipid profile in the hypercholesterolaemic condition.

Huang J, Wang HJ, Wu Q, Wang XL, Liu GQ, 2022.

Research progress and prospect of active proteins and peptides of Ganoderma

Journal of Fungal Research, 20(2): 79-86 (in Chinese)

Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Balter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Ascherio A, 2009.

Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies

American Journal of Clinical Nutrition, 89(5): 1425-1432

DOI:10.3945/ajcn.2008.27124      PMID:19211817      [本文引用: 1]

Saturated fatty acid (SFA) intake increases plasma LDL-cholesterol concentrations; therefore, intake should be reduced to prevent coronary heart disease (CHD). Lower habitual intakes of SFAs, however, require substitution of other macronutrients to maintain energy balance.We investigated associations between energy intake from monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and carbohydrates and risk of CHD while assessing the potential effect-modifying role of sex and age. Using substitution models, our aim was to clarify whether energy from unsaturated fatty acids or carbohydrates should replace energy from SFAs to prevent CHD.This was a follow-up study in which data from 11 American and European cohort studies were pooled. The outcome measure was incident CHD.During 4-10 y of follow-up, 5249 coronary events and 2155 coronary deaths occurred among 344,696 persons. For a 5% lower energy intake from SFAs and a concomitant higher energy intake from PUFAs, there was a significant inverse association between PUFAs and risk of coronary events (hazard ratio: 0.87; 95% CI: 0.77, 0.97); the hazard ratio for coronary deaths was 0.74 (95% CI: 0.61, 0.89). For a 5% lower energy intake from SFAs and a concomitant higher energy intake from carbohydrates, there was a modest significant direct association between carbohydrates and coronary events (hazard ratio: 1.07; 95% CI: 1.01, 1.14); the hazard ratio for coronary deaths was 0.96 (95% CI: 0.82, 1.13). MUFA intake was not associated with CHD. No effect modification by sex or age was found.The associations suggest that replacing SFAs with PUFAs rather than MUFAs or carbohydrates prevents CHD over a wide range of intakes.

Kwang JL, In JY, Kyung HK, Sang HL, Hun JH, Won SE, Jin HJ, 2011.

Amino acid and fatty acid compositions of Agrocybe chaxingu, an edible mushroom

Journal of Food Composition & Analysis, 24(2): 175-178

[本文引用: 1]

Liu X, Zhong ZQ, Yuan JG, Huang XN, 2000.

Effect of lipid content in Ganoderma lucidum spore on telomerase activity in hepatocellular carcinoma in mice

Science and Technology of Food Industry, 22(6): 18 (in Chinese)

Lu SH, Yang S, Yuan YJ, 2007.

Application of lipidomics in pharmaceutical research

Journal of Cell Biology, 29(2): 169-172 (in Chinese)

Yilmaz N, Solmaz M, Türkekul İ, Elmastaş M, 2006.

Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey

Food Chemistry, 99(1): 168-174

DOI:10.1016/j.foodchem.2005.08.017      URL    

Sande D, Oliveira GP, Moura MAFE, Martins BA, Lima MTNS, Takahashi JA, 2019.

Edible mushrooms as a ubiquitous source of essential fatty acids

Food Research International, 125: 108524

DOI:10.1016/j.foodres.2019.108524      URL     [本文引用: 1]

Santos FC, Fernandes AS, Antunes CAC, Moreira FP, Videira A, Marinho HS,de Almeida RFM, 2018.

Reorganization of plasma membrane lipid domains during conidial germination

Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1862(2): 156-166

[本文引用: 1]

Sewell GW, Hannun YA, Han X, Koster G, Bielawski J, Goss V, Smith PJ, Rahman FZ, Vega R, Bloom SL, Walker AP, Postle AD, Segal AW, 2012.

Lipidomic profiling in Crohn’s disease: abnormalities in phosphatidylinositols, with preservation of ceramide, phosphatidylcholine and phosphatidylserine composition

International Journal of Biochemistry & Cell Biology, 44(11): 1839-1846

DOI:10.1016/j.biocel.2012.06.016      URL     [本文引用: 1]

Teng LM, Tian XM, Wu F, Dai YC, 2021.

A comparison of triterpenoids and polysaccharides in 13 species of wild Ganoderma

Mycosystema, 40: 1811-1819 (in Chinese)

Wang H, Ng TB, 2006.

Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum

Peptides, 27(1): 27-30

DOI:10.1016/j.peptides.2005.06.009      URL     [本文引用: 1]

Wang Q, Xu MM, Liu GQ, Cao CL, Shi GY, Ding ZY, 2021.

An efficient strategy to enhance triterpenoid production by liquid superficial-static culture (LSSC) of Ganoderma lingzhi

Mycosystema, 40(3): 656-667 (in Chinese)

Wu BF, Wei F, Xie Y, Xu SL, X, Chen H, 2018.

Ion mobility mass spectrometry and its application to lipid analysis

Journal of Analytical Testing, 37(11): 1388-1395 (in Chinese)

Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC, 2019.

Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species

Fungal Diversity, 98: 1-76

DOI:10.1007/s13225-019-00432-7      [本文引用: 1]

Xie HY, Wang WJ, Li ZZ, Xia BR, Li K, Hou Y, 2016.

Identification and validation of differential plasma diagnostic biomarkers of ovarian cancer based on lipidomics

Chinese Journal of Cancer Prevention and Treatment, 23(23): 6 (in Chinese)

Yang YL, Zhang HN, Zuo JH, Gong XY, Li L, 2019.

Advances in research on the active constituents and physiological effects of Ganoderma lucidum

Biomedical Dermatology, 3(1): 1-17

DOI:10.1186/s41702-019-0039-x      [本文引用: 1]

Ye L, Liu S, Xie F, Zhao L, Wu X, 2018.

Enhanced production of polysaccharides and triterpenoids in Ganoderma lucidum fruit bodies on induction with signal transduction during the fruiting stage

PLoS One, 13(4): e0196287

DOI:10.1371/journal.pone.0196287      URL     [本文引用: 1]

Yuan JG, Liu X, Zhong ZQ, 2000.

Experimental study on the protective effect of lipid in Ganoderma lucidum spores on liver

Science and Technology of Food Industry, 22(6): 15 (in Chinese)

Zhang J, Wang SX, Xue FF, Wang XL, Zhang JS, Liu GQ, 2020.

Kinetic characteristics of triterpene acid synthesised by submerged fermentation of Ganoderma lingzhi under 9,10-methylene hexadecanoic acid intervention

Mycosystema, 39(1): 75-83 (in Chinese)

Zhang L, Gao J, Liu SY, Sang YX, Wang XH, 2021.

Identification of lipid composition in fermented milk of Streptococcus thermophilus by ultra performance liquid chromatography-quadrupole/electrostatic field orbit trap high resolution mass spectrometry

Food Science, 42(4): 197-205 (in Chinese)

DOI:10.1111/jfds.1977.42.issue-1      URL    

Zhou XW, Su KQ, Zhang YM, 2012.

Applied modern biotechnology for cultivation of Ganoderma and development of their products

Applied Microbiology and Biotechnology, 93(3): 941-963

DOI:10.1007/s00253-011-3780-7      URL     [本文引用: 1]

戴玉成, 曹云, 周丽伟, 吴声华, 2013.

中国灵芝学名之管见

菌物学报, 32(6): 947-952

[本文引用: 1]

戴玉成, 杨祝良, 崔宝凯, 吴刚, 袁海生, 周丽伟, 何双辉, 葛再伟, 吴芳, 魏玉莲, 员瑗, 司静, 2021.

中国森林大型真菌重要类群多样性和系统学研究

菌物学报, 40: 770-805

[本文引用: 1]

黄佳, 王浩锦, 伍强, 王晓玲, 刘高强, 2022.

灵芝活性蛋白和多肽研究进展及展望

菌物研究, 20(2): 79-86

[本文引用: 1]

刘昕, 钟志强, 袁剑刚, 黄晓霓, 2000.

灵芝孢子内脂质对小鼠肝癌及肝癌组织端粒酶活性影响的研究

食品工业科技, 22(6): 18

[本文引用: 1]

陆姝欢, 杨松, 元英进, 2007.

脂质组学在医药研究中的应用

细胞生物学杂志, 29(2): 169-172

[本文引用: 1]

滕李铭, 田雪梅, 吴芳, 戴玉成, 2021.

13种野生灵芝菌丝体中胞内三萜与多糖含量的比较

菌物学报, 40: 1811-1819

[本文引用: 1]

王琼, 徐萌萌, 刘高强, 曹春蕾, 石贵阳, 丁重阳, 2021.

灵芝液体浅层静置培养高效生产三萜的研究

菌物学报, 40(3): 656-667

[本文引用: 1]

吴邦富, 魏芳, 谢亚, 徐淑玲, 吕昕, 陈洪, 2018.

离子迁移质谱技术及其在脂质分析中的应用

分析测试学报, 37(11): 1388-1395

[本文引用: 1]

谢宏宇, 王文杰, 李贞子, 夏白荣, 李康, 侯艳, 2016.

卵巢癌脂质组学诊断标志物的筛选及其效果研究

中华肿瘤防治杂志, 23(23): 6

[本文引用: 1]

袁剑刚, 刘昕, 钟志强, 2000.

灵芝孢子内脂质护肝作用的实验研究

食品工业科技, 22(6): 15

[本文引用: 1]

张婧, 王思贤, 薛菲菲, 王晓玲, 张家顺, 刘高强, 2020.

9,10-环甲基十七烷酸干预下灵芝深层发酵合成三萜酸的动力学特征

菌物学报, 39(1): 75-83

[本文引用: 1]

章丽, 高洁, 刘松雁, 桑亚新, 王向红, 2021.

超高效液相色谱-四极杆/静电场轨道阱高分辨质谱鉴定嗜热链球菌发酵乳中脂质构成

食品科学, 42(4): 197-205

[本文引用: 1]

/