[1] 刘伟,贾玉山,格根图,等. 燕麦青贮研究进展[J]. 草地学报,2022,30(12):3175-3183 [2] 杨富裕. 树立"饲草就是粮食"理念,大力发展饲草产业[J]. 草地学报,2023,31(2):311-313 [3] XIAO Y Z,SUN L,WANG Z J,et al. Fermentation Characteristics,Microbial compositions,and predicted functional profiles of forage oat ensiled with Lactiplantibacillus plantarum or Lentilactobacillus buchneri[J]. Fermentation,2022,8(12):707 [4] DIAO X M. Production and genetic improvement of minor cereals in China[J]. The Crop Journal,2017,5(2):103-114 [5] CHEN L,GUO G,YUAN X J,et al. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality,aerobic stability and in vitro digestibility on the Tibetan plateau[J]. Journal of Animal Physiology and Animal Nutrition,2017,101(5):144-153 [6] SUN L,XUE Y L,XIAO Y Z,et al. Community synergy of lactic acid bacteria and cleaner fermentation of oat silage prepared with a multispecies microbial inoculant[J]. Microbiology Spectrum,2023,11(3):705-723 [7] DOLORES P M,ANTONIO J E,ANNA G V,et al. Transferring a large data library of fresh total mixed rations from a benchtop to 2 portable near-infrared spectrometers for on-farm real-time decisions[J]. Journal of Dairy Science,2022,105(3):2380-2392 [8] 任秀珍,郭宏儒,贾玉山,等. 近红外光谱技术在饲草分析中的应用现状及展望[J]. 光谱学与光谱分析,2009,29(3):635-640 [9] 陈菲,李小梅,倪奎奎,等.近红外光谱技术在青贮饲料品质检测中的研究进展[J]. 中国饲料,2021(23):78-83 [10] 褚小立,陈瀑,李敬岩,等. 近红外分析技术的最新进展与展望[J]. 分析测试学报,2020,39(10):1181-1188 [11] NORRIS K H,BARNES R F,MOORE J E,et al. Prediction forage quality by NIRS[J]. Animal Science,1976,43(4):889-897 [12] SAMADI,WAJIZAH S,MUNAWAR A A. Near infrared spectroscopy (NIRS) data analysis for a rapid and simultaneous prediction of feed parameters[J]. Data in Brief Volume,2020,29:105211 [13] 徐广通,袁洪福,陆婉珍. 现代近红外光谱技术及应用进展[J]. 光谱学与光谱分析,2000,20(2):134-142 [14] 杨雪萍,陈菲,杨富裕,等. 近红外光谱分析技术在青贮饲料营养品质评价上中的研究进展[J]. 饲料工业,2019,41(10):19-22 [15] 张颖超,尹守亮,杨富裕,等. 木本饲料青贮研究进展[J]. 生物技术通报,2021,37(9):48-57 [16] 苏嘉琪,辛杭书,刘春龙,等. 国内外青贮饲料原料来源、品质评价及影响因素的研究进展[J]. 动物营养学报,2022,34(12):7585-7594 [17] BRODERICK G A,KANG J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J]. Journal of Dairy Science,1980,63(1):64-75 [18] 许庆方,玉柱,韩建国,等. 高效液相色谱法测定紫花苜蓿青贮中的有机酸[J]. 草原与草坪,2007(2):63-65 [19] MCDONALD P,HENDERSON A R. Determination of water-soluble carbohydrates in grass[J]. Journal of the Science of Food and Agriculture,1964,15(6):395-398 [20] 张丽英. 饲料分析及饲料质量检测技术[M]. 北京:中国农业大学出版社,2007:47-94 [21] 李军涛. 近红外反射光谱快速评定玉米和小麦营养价值的研究[D]. 北京:中国农业大学,2014:21-22 [22] KOVALENKO I V,RIPPKE G R,HURBURGH C R. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy[J]. Journal of Agricultural and Food Chemistry,2006,54(10):3485-3491 [23] BERZAGHI P,CHERNEY J H,CASLER M D. Prediction performance of portable near infrared reflectance instruments using preprocessed dried,ground forage samples[J]. Computers and Electronics in Agriculture,2021,182:106013 [24] 刘强,孟庆翔,白琪林,等. 利用近红外光谱法快速测定青贮玉米饲料中NDF与ADF含量[J]. 中国畜牧杂志,2005,41(11):39-41 [25] 陈鹏飞,戎郁萍,韩建国. 近红外光谱技术测定紫花苜蓿青贮鲜样的发酵品质[J]. 光谱学与光谱分析,2008,28(12):2799-2803 [26] 刘娜. 全株玉米青贮营养价值快速评价及预测模型构建[D]. 兰州:甘肃农业大学,2019:16-26 [27] 张书阅,熊安然,熊本海,等. 燕麦草常规营养成分含量近红外预测模型的建立[J]. 动物营养学报,2022,34(2):1134-1342 [28] 王储,麻冬梅,孙彦,等. 检测燕麦干草主要营养成分含量的近红外光谱分析模型[J]. 草地学报,2022,30(10):2645-2651 [29] 李海萍,关皓,周青平,等. 添加麦麸和乳酸菌对川西北高寒地区燕麦裹包青贮品质和有氧稳定性的影响[J]. 草地学报,2023,31(1):302-310 [30] 柴继宽,赵桂琴,琚泽亮. 添加不同乳酸菌对燕麦低温青贮发酵的影响[J]. 草地学报,2023,31(3):923-928 [31] DIAS C S A M M,NUNES H P B,ALFREDO E S B. Influence of the Physical Properties of Samples in the Use of NIRS to Predict the Chemical Composition and Gas Production Kinetic Parameters of Corn and Grass Silages[J]. Fermentation,2023,9(5):418 [32] BAKER C W,GIVENS D I,DEAVILLE E R. Prediction of organic matter digestibility in vivo of grass silage by near infrared reflectance spectroscopy:effect of calibration method,residual moisture and particle size[J]. Animal Feed Science and Technology,1994,50(1-2):17-26 [33] IKOYI,A Y,YOUNGE B A. Influence of forage particle size and residual moisture on near infrared reflectance spectroscopy (NIRS) calibration accuracy for macro-mineral determination[J]. Animal Feed Science and Technology,2020,270:114674 [34] LOVETT D K,DEAVILLE E R,GIVENS D I,et al. Near infrared reflectance spectroscopy (NIRS) to predict biological parameters of maize silage:effects of particle comminution,oven drying temperature and the presence of residual moisture[J]. Animal Feed Science and Technology,2005,120(3-4):323-332 [35] LU B,WANG X F,TANG X Y,et al. Quantitative NIR spectroscopy determination of coco-peat substrate moisture content:Effect of particle size and non-uniformity[J]. Infrared Physics and Technology,2020,111:103482 [36] COZZOLINO D,FASSIO A,FERNANDEZ E,et al. Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy[J]. Animal Feed Science and Technology,2006,129(3-4):329-336 [37] MURPHY D J,BRIEN B O,DONOVAN M O,et al. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures[J]. Information Processing in Agriculture,2022,9(2):243-253 |