[1] OLARANONT Y,STEWART A B,TRAIPERM P. Effects of crude oil on plant growth and leaf anatomical structures in a common coastal plant[J]. International Journal of Phytoremediation,2021,23(2):162-170 [2] 高钿惠,尚佳州,宋立婷,等. 小叶杨叶片光合特性与解剖结构对干旱及复水的响应[J]. 中国水土保持科学,2021,19(6):18-26 [3] 李萍. 光照强度对3种大型卷瓣凤梨叶片解剖结构及光合色素含量的影响[J]. 西北植物学报,2020,40(12):2065-2074 [4] 王坤,韦晓娟,李宝财,等. 金花茶组植物叶解剖结构特征与抗旱性的关系[J]. 中南林业科技大学学报,2019,39(12):34-39 [5] MONJE P V,BARAN E J. Characterization of Calcium Oxalates Generated as Biominerals in Cacti[J]. Plant Physiology,2002,128(2):707-713 [6] YANG Z,ZHU Q,ZHAN W,et al. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau[J]. Ecological Engineering,2018,110:128-136 [7] ZHANG Y,LIU X,CONG J,et al. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow[J]. Molecular Ecology,2017,26(14):3676-3686 [8] 田培林,刘师,李登武. 祁连圆柏针叶解剖结构对高原寒旱环境的适应性分析[J]. 西北植物学报,2022,42(6):1030-1041 [9] 吴青松,刘英卉,李硕,等. 乌苏里鼠李茎叶的解剖结构及其生态适应性[J]. 植物研究,2023,43(3):461-469 [10] 马静,贺熙勇,陶亮,等. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价[J]. 热带作物学报,2023,44(7):1392-1399 [11] 周雨珩,刘慧,张世柯,等. 基于叶片解剖性状探究29种植物对热带珊瑚岛的适应策略[J]. 热带亚热带植物学报,2023,31(6):747-756 [12] 王维睿,苏世平,李毅,等. 6个地理种群红砂(Reaumuria soongocica)叶片生态解剖特征及抗旱性评价[J]. 中国沙漠,2015,35(4):895-900 [13] LIU W,ZHENG L,QI D. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes[J]. Ecology and Evolution,2020,10(15):8166-8175 [14] 韩喆,张永强,张浩浩,等. 干旱胁迫对伊犁绢蒿幼苗生长及叶片解剖结构的影响[J]. 草地学报,2024,32(1):105-112 [15] 肖晴,林轸荣,姜风岩,等. 放牧强度对高寒草甸优势植物叶片解剖结构的影响[J]. 草地学报,2023,31(10):3018-3025 [16] 李秀丽,张文君,鲁剑巍,等. 植物体内草酸钙的生物矿化[J]. 科学通报,2012,57(26):2443-2455 [17] SAMEH S,MOHAMMAD M G,EL-KEBLAWY A A,et al. Mechanical and phytochemical protection mechanisms of Calligonum comosum in arid deserts[J]. Plos One,2018,13(2):e0192576 [18] BAUER P,ELBAUM R,WEISS I M. Calcium and silicon mineralization in land plants:Transport,structure and function[J]. Plant Science,2011,180(6):746-756 [19] KORTH K L,DOEGE S J,PARK S H,et al. Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects[J]. Plant Physiology,2006,141(1):188-95 [20] 袁佳秋,孙大伟,杨玲,等. 东京四照花钙组分与渗透调节物质对盐胁迫的响应[J]. 生态环境学报,2023,32(4):687-696 [21] 苏志孟,张习敏,马琳,等. 堇菜叶片草酸钙晶体与水分维持的关系[J]. 广西植物,2019,39(6):720-728 [22] 李梦琦,何兴东,杨祥祥,等. 半干旱区两种草原类型植物体内草酸钙研究[J]. 草地学报,2018,26(6):1421-1427 [23] CI H C,LIE X D,LI R,et al. Characteristics of plant calcium fractions for 25 species in Tengger Desert[J]. Sciences in Cold and Arid Regions,2010,2(2):168-174 [24] 霍佳娟,朱珏妃,宋明华,等. 青藏高原高寒草甸退化演替进程中植被斑块特征[J]. 草地学报,2022,30(11):3113-3118 [25] 彭新华,杨绕琼,尹云丽,等. 滇西北白马雪山高山松(Pinus densata)径向生长对气候因子的响应[J]. 生态学报,2023,43(21):8884-8893 [26] 关法春,梁正伟,王忠红,等. 方格法与数字图像法测定盐碱化草地植被盖度的比较[J]. 东北农业大学学报,2010,41(1):130-133 [27] 杨世颖,邢逞,张丽,等. 基于粉末X射线衍射技术的固体制剂晶型定性分析[J]. 医药导报,2015,34(7):930-934 [28] 刘晓婷,姚拓,马亚春,等. 植物根际促生菌发酵液中植物激素含量的液液萃取-高效液相色谱测定法[J]. 草业科学,2022,39(10):2222-2228 [29] 朱凯琳,李嘉宝,陈昕. 龙苍沟国家森林公园7种花楸属植物的叶解剖特征及其环境适应性[J]. 植物研究,2022,42(2):174-183 [30] 杨春娇,韩雨圳,李忠馗,等. 藏东南高寒草甸两种嵩草根系导管解剖结构对生境干旱化的响应[J]. 草业学报,2022,31(2):76-87 [31] 丁伟,杨振华,张世彪,等. 青海柴达木地区野生胡杨叶的形态解剖学研究[J]. 中国沙漠,2010,30(6):1411-1415 [32] 刘慧斌,朱周俊,赵君茹,等. 6个高州油茶无性系叶片形态结构及耐热性比较[J]. 热带作物学报,2023,44(4):737-745 [33] BINKS O,MEIR P,ROWLAND L,et al. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees[J]. Tree Physiology,2016,36(12):1550-1561 [34] CHEN M,ZHU X,ZHANG Y,et al. Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes[J]. Scientific Reports,2020,10(1):6696 [35] ZHU J,ZHU H,CAO Y,et al. Effect of simulated warming on leaf functional traits of urban greening plants[J]. BMC Plant Biology,2020,20(1):139 [36] 吴建波,王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报,2021,45(3):265-273 [37] 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价[J]. 西北植物学报,2023,43(7):1170-1184 [38] VELIKOVA V,ARENA C,IZZO L G,et al. Functional and Structural Leaf Plasticity Determine Photosynthetic Performances during Drought Stress and Recovery in Two Platanus orientalis Populations from Contrasting Habitats[J]. International Journal of Molecular Sciences,2020,21(11):3912 [39] GONZALEZ P L,RAVETTA D A. Relationship between photosynthetic rate,water use and leaf structure in desert annual and perennial forbs differing in their growth[J]. Photosynthetica,2018,56(4):1177-1187 [40] 刘万鹏,李悦煊,李志勇,等. 内蒙古四种不同生态类型扁蓿豆叶片解剖性状与抗旱性关系的研究[J]. 中国草地学报,2023,45(6):32-43 [41] HU Y,YANG L,GAO C,et al. A comparative study on the leaf anatomical structure of Camellia oleifera in a low-hot valley area in Guizhou Province,China[J]. Plos One,2022,17(1):e0262509 [42] 李雪,吴青松,许少祺,等. 景天科3种植物的叶片形态结构与抗旱性评价[J]. 东北师大学报(自然科学版),2023,55(3):114-121 [43] MALES J. Adaptive variation in vein placement underpins diversity in a major Neotropical plant radiation[J]. Oecologia,2017,185(3):375-386 [44] 刘梦瑶,李伟琼,王铁娟. 差不嘎蒿茎叶解剖特征及其与气候因子的关系[J]. 草地学报,2021,29(5):1118-1124 [45] 徐平宜,张嘉悦,何兴东. 过渡带近距离同地分布不同植物群落建群种叶片草酸钙特征[J]. 草地学报,2021,29(5):929-935 [46] TOOULAKOU G,GIANNOPOULOS A,NIKOLOPOULOS D,et al. Alarm Photosynthesis:Calcium Oxalate Crystals as an Internal CO2 Source in Plants[J]. Plant Physiology,2016,171(4):2577-2585 |