[1] 陈佐忠,汪诗平,王艳芬,等. 中国典型草原生态系统[M]. 北京:科学出版社,2000:1-2 [2] 张扬建,朱军涛,沈若楠,等. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报,2020,44(5):553-564 [3] 王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义[J]. 冰川冻土,2002,24(6):693-700 [4] EZE S,PALMER S M,CHAPMAN P J. Soil organic carbon stock in grasslands:effects of inorganic fertilizers,liming and grazing in different climate settings[J]. Journal of Environmental Management,2018,223:74-84 [5] 曹静娟.祁连山草地管理方式变化对土壤有机碳、氮库的影响[D]. 兰州:甘肃农业大学,2010:3-4 [6] BOLAN N S,BASKARAN S,THIAGARAJAN S. An evaluation of the methods of measurement of dissolved organic carbon in soils,manures,sludges and stream water[J]. Communications in Soil Science and Plant Analysis,1996,27: 2723-2737 [7] 薛菁芳,高艳梅,汪景宽,等. 土壤微生物量碳氮作为土壤肥力指标的探讨[J]. 土壤通报,2007,38(2):247-250 [8] 方军武. 放牧对典型草原群落生产力、养分含量及其化学计量学特征的影响[D]. 呼和浩特:内蒙古大学,2018:13-30 [9] 李江文,王忠武,任海燕,等. 荒漠草原建群种短花针茅功能性状对长期放牧的可塑性响应[J]. 西北植物学报,2017,37(9):1854-1863 [10] 蒲宁宁. 放牧强度对昭苏草甸草原土壤有机碳组分及其碳、氮特征的影响[D]. 乌鲁木齐:新疆农业大学,2013:17-19 [11] 王蓓,孙庚,罗鹏,等. 模拟升温和放牧对高寒草甸土壤有机碳氮组分和微生物生物量的影响[J]. 生态学报,2011,31(6):1506-1514 [12] 王岭,张敏娜,徐曼,等. 草地多功能提升的多样化家畜放牧理论及应用[J]. 科学通报,2021,66(30):3791-3798 [13] 王旭,王德利,刘颖,等. 羊草草地生长季放牧山羊采食量和食性选择[J]. 生态学报,2002,22(5):661-667 [14] YANG X X,DONG Q M,CHU H,et al. Different responses of soil element contents and their stoichiometry (C∶N∶P) to yak grazing and Tibetan sheep grazing in an alpine grassland on the eastern Qinghai-Tibetan Plateau’[J]. Agriculture,Ecosystems & Environment,2019,285(8):106628 [15] 张艳芬,杨晓霞,董全民,等. 牦牛和藏羊混合放牧对放牧家畜采食量和植物补偿性生长的影响[J]. 草地学报,2019,27(6):1607-1614 [16] 鲍士旦. 土壤农化分析[M]. 第3版. 北京:中国农业出版社,2000: 39-58 [17] SINGH J S,GUPTA V K. Soil microbial biomass:A key soil driver in management of ecosystem functioning[J]. Science of the Total Environment,2018,634:497-500 [18] 徐晓凤,牛德奎,郭晓敏,等. 放牧对武功山草甸土壤微生物生物量及酶活性的影响[J]. 草业科学,2018,35(7):1634-1640 [19] LIU N,ZHANG Y J,CHANG S J,et al. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia[J]. PLoS One,2012,7:e36434 [20] 彭晓茜,王娓. 内蒙古温带草原土壤微生物生物量碳的空间分布及驱动因素[J]. 微生物学通报,2016,43(9):1918-1930 [21] BARDGETT R D,JONES A C,JONES D L,et al. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems[J]. Soil Biology and Biochemistry,2001,33: 1653-1664 [22] 何亚婷,董云社,齐玉春,等. 草地生态系统土壤微生物量及其影响因子研究进展[J]. 地理科学进展,2010,29(11):1350-1359 [23] 王启兰,王长庭,杜岩功,等.放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系[J].草业学报,2008,17(2):39-46 [24] WANG Y N,LI F Y,SONG X,et al. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types:Soil moisture,not home-field advantage,plays a dominant role[J]. Agriculture,Ecosystems & Environment,2020,303:107119 [25] MA L N, GAO X L, LIU G F, et al. The retention dynamics of N input within the soil-microbe-plant system in a temperate grassland[J]. Geoderma,2020,368:114290 [26] LIU J,FENG C,WANG D L,et al. Impacts of grazing by different large herbivores in grassland depend on plant species diversity[J]. Journal of Applied Ecology,2015,52(4):1053-1062 [27] 张鲜花,朱进忠,靳瑰丽,等. 新疆褐牛放牧饲养条件下放牧强度对草地及家畜的影响[J].新疆农业科学,2013,50(5):931-937 [28] MOOSHAMMER M,WANEK W,ZECHMEISTER-BOLTENSTERN S,et al.Stoichiometric imbalances between terrestrial decomposer communities and their resources:mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology,2014,5:(22):1-10 [29] SHRESTHA G,STAHL P D. Carbon accumulation and storage in semi-arid sagebrush steppe:effects of long-term grazing exclusion[J]. Agriculture,Ecosystems & Environment,2008,125(1-4):173-181 [30] RAIESI F,ASADI E. Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem[J]. Biology and Fertility of Soils,2006,43(1):76-82 [31] JIA Z,LI P,WU Y T,et al. Deepened snow loosens temporal coupling between plant and microbial N utilization and induces ecosystem N losses[J]. Global Change Biology,2022,28(15):4655-4667 [32] 李香真,陈佐忠. 不同放牧率对草原植物与土壤C、N、P含量的影响[J]. 草地学报,1998,6(2):90-98 [33] 韩晓日,郑国砥,刘晓燕,等. 有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征[J]. 中国农业科学,2007,40(4):765-772 [34] 丁成翔.青藏高原高寒草原土壤微生物对不同放牧方式的响应[D].西宁:青海大学,2020: 48-58 [35] DÍAZ-RAVIÑA M,ACEA M J,CARBALLAS T. Microbial biomass and its contribution to nutrient concentrations in forest soils[J]. Soil Biology and Biochemistry,1993,25(1):25-31 [36] HOLT J A. Grazing pressure and soil carbon,microbial biomass and enzyme activities in semi-arid northeastern Australia[J]. Applied Soil Ecology,1997,5(2):143-149 [37] 袁晓波.氮沉降对黄土高原典型草原植物群落稳定性及土壤微生物养分利用过程的影响[D]. 兰州:兰州大学,2020:76-79 [38] 王明君,赵萌莉,崔国文,等.放牧对草甸草原植被和土壤的影响[J].草地学报,2010,18(6):758-762 [39] BERG W A,BRADFORD J A,SIMS P L. Long-term soil nitrogen and vegetation change on sandhill rangeland[J]. Journal of Range Management,1997,50:482-486 [40] 詹天宇,孙建,张振超,等.基于meta分析的放牧压力对内蒙古高原草地生态系统的影响[J].中国生态农业学报,2020,28(12):1847-1858 [41] 董星丰,赵光影,李苗,等. 大兴安岭北部多年冻土区土壤碳氮含量及有机碳矿化特征[J]. 生态学报,2021,41(17):6728-6737 [42] FAUCI M F,DICK R P. Soil microbial dynamics: short-and long-term effects of inorganic and organic nitrogen[J]. Soil Science Society of America Journal,1994,58(3):801-806 [43] KAISER C,FRANKLIN O,DIECKMANN U,et al. Microbial community dynamics alleviate stoichiometric constraints during litter decay[J]. Ecology letters,2014,17(6):680-690 [44] HUYGENS D,DÍAZ S,URCELAY C,et al. Microbial recycling of dissolved organic matter confines plant nitrogen uptake to inorganic forms in a semi-arid ecosystem[J]. Soil Biology and Biochemistry,2016,101:142-151 [45] SCHIPPER L A,SPARLING G P. Accumulation of soil organic C and change in C∶N ratio after establishment of pastures on reverted scrubland in New Zealand[J]. Biogeochemistry,2011,104(1):49-58 [46] CHEN H H,MOTHAPO N V,Shi W. Fungal and bacterial N2O production regulated by soil amendments of simple and complex substrates[J]. Soil Biology and Biochemistry,2015,84:116-126 [47] ZHANG M X,ZHAO L Y,HU J P,et al. Different grazers and grazing practices alter the growth,soil properties,and rhizosphere soil bacterial communities of Medicago ruthenica in the Qinghai-Tibetan Plateau grassland[J]. Agriculture,Ecosystems & Environment,2023,352:108522 [48] 潘森,卜嘉玮,甘安琪,等. 放牧强度对高寒草地土壤微生物胞外酶化学计量的影响[J]. 草地学报,2023,31 (6):1780-1787 [49] ZHOU G Y,ZHOU X H,HE Y H,et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems:A meta-analysis[J]. Global change biology,2017,23:1167-1179 |