[1] 袁志林, 陈连庆. 菌根共生体形成过程中的信号识别与转导机制[J]. 微生物学通报,2007,34(1):161-164 [2] Podila G K, Lanfranco L. Functional genomic approaches for studies of mycorrhizal symbiosis[M]. Plant Surface Microbiology, 2008:567-592 [3] Stommel M, Mann P, Franken P. EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea[J]. Mycorrhiza,2001,10(6):281-285 [4] Raffaella B, Luisa L. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis[J]. Mycorrhiza,2006,16(8):509-524 [5] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Plant Biology,2006,57(1):233-266 [6] Beilby J P, Kidby D K. Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonium: changes in neutral and polar lipids[J]. Journal of Lipid Research,1980,21(6):739-750 [7] Lammers P J, Jun J, Abubaker J, et al. The glyoxylate cycle in an arbuscular mycorrhizal fungus: gene expression and carbon flow[J]. Plant Physiology,2001,127(3):1287-1298 [8] Bianciotto V, Barbiero G, Bonfante P. Analysis of the cell-cycle in an arbuscular mycorrhizal fungus by flow-cytometry and bromodeoxyuridine labeling[J]. Protoplasma,1995,188(3/4):161-169 [9] Requena N, Mann P, Franken P. A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrhizal fungus Glomus mosseae[J]. Protoplasma,2000,212(1/2):89-98 [10] Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature,2005,435(7043):824-827 [11] Harrison M J. Signaling in the arbuscular mycorrhizal symbiosis[J]. Annual Review of Microbiology,2005,59:19-42 [12] Tamasloukht M, Séjalon-Delmas N, Kluever A, et al. Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea[J]. Plant Physiology,2003,131(3),1468-1478 [13] Kosuta S, Chabaud M, Lougnon G, et al. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatila[J]. Plant Physiology,2003,131(3):952-962 [14] Ercolin F, Reinhardt D. Successful joint ventures of plants: arbuscular mycorrhiza and beyond[J]. Trends in Plant Science,2011,16(7):356-362 [15] Genre A, Chabaud M, Faccio A, et al. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota [J]. The Plant Cell,2008,20(5):1407-1420 [16] Genre A, Bonfante P. Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi[J]. Journal of Plant Interactions,2005,1(1):3-13 [17] Requena N, Breuninger M, Franken P, et al. Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae[J]. Plant Physiology,2003,132(3):1-10 [18] Catoira R, Galera C, de Billy F, et al. Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway[J]. The Plant Cell,2000,12(9):1647-1666 [19] Stracke S, Kistner C, Yoshida S, et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis[J]. Nature,2002,417(6892):959-962 [20] ImaizumI-Anraku H, Takeda N, Charpentier M, et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots[J]. Nature,2005,433(7025):527-531 [21] Mitra R M, Gleason C A, Edwards A, et al. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning[J]. Proceedings of the National Academy of Sciences,2004,101(13):4701-4705 [22] Lévy J, Bres C, Geurts R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J]. Science,2004,303(5662):1361-1364 [23] Ané J M, Kiss G B, Riely B K, et al. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes[J]. Science,2004,303(5662):1364-1367 [24] Oldroyd G E D, Harrison M J, Udvardi M. Keys to long-term harmony in legume-microbe symbioses[J]. Plant Physiology, 2005,137(4):1205-1210 [25] Kalo P, Gleason C, Edwards A, et al. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators[J]. Science,2005,308(5729):1786-1789 [26] Smit P, Raedts J, Portyanko V, et al. NSP1 of the GRAS protein family is essential for rhizobial nod factor-induces transcription[J]. Science,2005,308(5729):1789-1791 [27] Chen C Y, Gao M Q, Liu J Y, et al. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase[J]. Plant Physiology,2007,145(4):1619-1628 [28] Navazio L, Moscatiello R, Genre A, et al. The arbuscular mycorrhizal fungus Glomus intraradices induces intra-cellular calcium changes in soybean cells[J]. Caryologia,2007,60(1/2):137-140 [29] Kanamori N, Madsen L H, Radutoiu S, et al. A nucleoprin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis[J]. Proceedings of the National Academy of Sciences,2006,103(2):359-364 [30] Saito K, Yoshikawa M, Yan K, et al. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus[J]. The Plant Cell,2007,19(2):610-624 [31] Javot H, Pumplin N, Harrison M J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles[J]. Plant, Cell and Environment,2007,30(3):310-322 [32] Bonfante P, Genre A. Mechanisms underlying beneficial plant fungus interactions in mycorrhizal symbiosis[J]. Nature Communications,2010,1(4):48 [33] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology,2011,62:227-250 [34] Smith S E, Read D J. Mycorrhizal symbiosis [M]. San Diego, CA: Academic, 1997 [35] 包玉英, 闫伟. 内蒙古草原几种葱属植物AM菌根侵染特性的初步研究[J]. 中国草地学报,2005,27(2):43-49 [36] Salzer P, Corbiere H, Boller T. Hydr ogen per oxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices[J]. Planta,1999,208(3):319-325 [37] Requena N, Fuller P, Franken P. Molecular characterization of Gm-FOX2, an evolutionarily highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during interaction with rhizobacteria[J]. Molecular Plant-Microbe Interactions,1999,12(10):934-942 |