[1] 李建国,濮励杰,朱明,等. 土壤盐渍化研究现状及未来研究热点[J].地理学报,2012,67(9):1233-1245
[2] 王佳丽,黄贤金,钟太洋,等. 盐碱地可持续利用研究综述[J]. 地理学报,2011,66(5):673-684
[3] Rozema J, Flowers T. Crops for a salinized world[J]. Science,2008,322(5907):1478-1480
[4] Munns R. Genes and salt tolerance:bringing them together[J]. New phytologist,2005,167(3):645-663
[5] Huang B, DaCosta M, Jiang Y. Research advances in mechanisms of turfgrass tolerance to abiotic stresses:from physiology to molecular biology[J]. Critical reviews in plant sciences,2014,33(2-3):141-189
[6] Gupta B, Huang B. Mechanism of salinity tolerance in plants:physiological, biochemical, and molecular characterization[J]. International journal of genomics,2014
[7] Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends in plant science, 2014,19(6):371-379
[8] Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences,2006,103(35):12987-12992
[9] Mian A, Oomen R J F J, Isayenkov S, et al. Overexpression of an Na+and K+permeable HKT transporter in barley improves salt tolerance[J]. The Plant Journal,2011,68(3):468-479
[10] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annual review of plant biology,1996,47(1):377-403
[11] Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual review of plant biology,2002,53:247
[12] Ault A D, Fassler J S, Deschenes R J. Altered phosphotransfer in an activated mutant of the Saccharomyces cerevisiae two-component osmosensor Sln1p[J]. Eukaryotic cell,2002,1(2):174-180
[13] Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Two-component systems in plant signal transduction[J]. Trends in plant science,2000,5(2):67-74
[14] Urao T, Yakubov B, Satoh R, et al. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor[J]. The Plant Cell,1999,11(9):1743-1754
[15] Kumar M N, Jane W N, Verslues P E. Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response[J]. Plant physiology,2013,161(2):942-953
[16] Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling[J]. Trends in plant science,2005,10(7):339-346
[17] 石静,徐培华,方艳,等. 转GhMAPK基因烟草植株的获得及其耐盐性分析[J]. 分子植物育种,2009,06:1113-1119
[18] 柏锡,朱延明,李丽文,等. 转OsMAPK4基因水稻耐盐性分析[J]. 东北农业大学学报,2009,40(8):53-57
[19] Harmon A C, Gribskov M, Harper J F. CDPKs-a kinase for every Ca2+ signal?[J]. Trends in plant science,2000,5(4):154-159
[20] Xu J, Tian Y S, Peng R H, et al. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta,2010,231(6):1251-1260
[21] Asano T, Hayashi N, Kikuchi S, et al. CDPK-mediated abiotic stress signaling[J]. Plant signaling & behavior,2012,7(7):817-821
[22] 王桂花,米福贵,刘娟,等. P5CS基因在蒙农杂种冰草植株中的表达及耐盐性研究[J]. 华北农学报,2007,04:33-36
[23] 徐冰,韩烈保,姚娜,等. 草地早熟禾转CMO-BADH双基因和转CMO基因耐盐性分析[J]. 草地学报,2008,16(4):353-358
[24] 李自超,张新春,张丽,等. 转mtlD基因旱稻的耐盐性研究[J]. 中国农业大学学报,2004,9(6):38-43
[25] 师恭曜,王玉美,华金平. 水通道蛋白与高等植物的耐盐性[J]. 中国农业科技导报,2012,14(4):31-38
[26] Przedpelska-Wasowicz E M, Wierzbicka M. Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells[J]. Protoplasma,2011,248(4):663-671
[27] 王康,朱慧森,董宽虎. 植物LEA蛋白及其基因家族成员PM16研究进展[J]. 草业科学,2008,25(2):97-102
[28] 王艳蓉,张治国,吴金霞. LEA蛋白及其在植物抗逆改良中的应用[J]. 生物技术通报,2015,31(3):1-9
[29] 白永琴,杨青川. LEA蛋白研究进展[J]. 生物技术通报,2009,9(1):1-7
[30] Sun X, Sun C, Li Z, et al. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress[J]. Plant, cell & environment, 2016,39:1320-1337.
[31] Xu J, Xue C, Xue D, et al. Overexpression of GmHsp90s, a heat shock protein 90(Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One,2013,8(7):e69810
[32] Zhai M, Sun Y, Jia C, et al. Over-expression of JrsHSP17.3 gene from Juglans regia confer the tolerance to abnormal temperature and NaCl stresses[J]. Journal of Plant Biology,2016,59(5):549-558
[33] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant physiology,1997,115(2):327
[34] Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual review of plant biology,1998,49(1):199-222
[35] Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(6):1988-1993
[36] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proceedings of the National Academy of Sciences,2000,97(21):11632-11637
[37] Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry,2000,275(3):1723-1730
[38] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling[J]. The Plant Cell,2003,15(1):63-78
[39] 毕影东, 刘清醒, 郭长虹, 等. ABA与植物耐盐信号转导途径的研究进展[J]. 中国农学通报,2013,29(9):167-171
[40] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology,2005,56:165-185
[41] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Current opinion in plant biology,2000,3(3):217-223
[42] 李田,孙景宽,刘京涛. 植物转录因子家族在耐盐抗旱调控网络中的作用[J]. 生命科学,2015,27(002):217-227
[43] Kanei-Ishii C, Sarai A, Sawazaki T, et al. The tryptophan cluster:a hypothetical structure of the DNA-binding domain of the myb protooncogene product[J]. Journal of Biological Chemistry,1990,265(32):19990-19995
[44] Katiyar A, Smita S, Lenka S K, et al. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis[J]. BMC genomics,2012,13(1):544
[45] Dai X, Xu Y, Ma Q, et al. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis[J]. Plant physiology,2007,143(4):1739-1751
[46] Zhang L, Zhao G, Jia J, et al. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress[J]. Journal of Experimental Botany, 2012,63(1):203-214
[47] He Y, Li W, Lv J, et al. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana[J]. Journal of experimental botany,2011,63:1511-1522
[48] Qin Y, Wang M, Tian Y, et al. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis[J]. Molecular biology reports,2012,39(6):7183-7192
[49] Tohge T, Ivakov A A, Mueller-Roeber B, et al. Salt-Related MYB1(SRM1) Coordinates Abscisic Acid Biosynthesis and Signaling During Salt Stress in Arabidopsis[J]. Plant Physiology,2015:1027-1041
[50] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in plant science,2000,5(5):199-206
[51] 唐立郦. GsZFP1和GsWRKY20基因转化苜蓿及耐盐耐旱性分析[D]. 哈尔滨:东北农业大学,2013
[52] Tao Z, Kou Y, Liu H, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of experimental botany,2011,62(14):4863-4874
[53] Li J, Luan Y, Liu Z. SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2015,123(1):67-81
[54] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA research,2003,10(6):239-247
[55] Tyagi A K, Kapoor S, Khurana J P, et al. Expression data for stress treatment in rice seedlings[EB/OL]. NCBI http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi,2007
[56] Jiang Y, Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes[J]. BMC Plant Biology,2006,6(1):25
[57] 方志红,王学敏,李俊,等. 白羊草NAC转录因子基因的克隆及表达分析[J]. 草地学报,2013,21(3):590-597
[58] 申玉华,徐振军,唐立红,等. 紫花苜蓿NAC类转录因子基因MsNAC2的克隆及其功能分析[J]. 中国农业科学,2015,48(15):2925-2938
[59] 李伟. 草地早熟禾转录因子基因PpNAC的克隆和表达分析[D]. 北京:中国林业科学研究院,2011
[60] Huang Q, Wang Y, Li B, et al. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis[J]. BMC plant biology,2015,15(1):268
[61] Han X, Feng Z, Xing D, et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis[J]. BMC plant biology,2015,15(1):208
[62] Landschulz W H, Johnson P F, McKnight S L. The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins[J]. Science,1988,240(4860):1759-1764
[63] Singh K B, Foley R C, Oñate-Sánchez L. Transcription factors in plant defense and stress responses[J]. Current opinion in plant biology,2002,5(5):430-436
[64] LIU J X, Srivastava R, Howell S H. Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis[J]. Plant, cell & environment,2008,31(12):1735-1743
[65] Lee S S, Yang S H, Berberich T, et al. Characterization of AtbZIP2, AtbZIP11 and AtbZIP53 from the group S basic region-leucine zipper family in Arabidopsis thaliana[J]. Plant Biotechnology,2006,23(3):249-258
[66] Sun X, Li Y, Cai H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses[J]. Journal of plant research,2012,125(3):429-438
[67] Ying S, Zhang D F, Fu J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta,2012,235(2):253-266
[68] Knight H, Trewavas A J, Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J]. The Plant Journal,1997,12(5):1067-1078
[69] Sangwan V, Foulds I, Singh J, et al. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx[J]. The Plant Journal,2001,27(1):1-12
[70] Boudsocq M, Sheen J. CDPKs in immune and stress signaling[J]. Trends in plant science,2013,18(1):30-40
[71] Zhu J. Abiotic Stress Signaling and Responses in Plants[J]. Cell,2016,167(2):313-324
[72] Pandey N, Ranjan A, Pant P, et al. CAMTA 1 regulates drought responses in Arabidopsis thaliana[J]. BMC genomics,2013,14(1):216
[73] Weng H, Yoo C Y, Gosney M J, et al. Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance[J]. PloS one,2012,7(3):e32925
[74] Li R, Zhang J, Wu G, et al. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance[J]. Plant, cell & environment,2012,35(9):1582-1600
[75] Pandey G K, Kanwar P, Singh A, et al. CBL-interacting protein kinase, CIPK21, regulates osmotic and salt stress responses in Arabidopsis[J]. Plant physiology,2015,169(1):780-792
[76] Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. The Plant Cell,2000,12(9):1667-1677
[77] Liu J, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proceedings of the National Academy of Sciences, 2000,97(7):3730-3734
[78] Shi H, Ishitani M, Wu S J, et al. A sodium-proton antiporter functions at the xylem/symplast boundary to control plant salt tolerance[J]. Proceeding of the national academy of sciences,2000,97:6896-6901
[79] Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. Proceedings of the national academy of sciences,2001,98(24):14150-14155
[80] Guo Y, Halfter U, Ishitani M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. The Plant Cell,2001,13(6):1383-1400
[81] Gaxiola R A, Fink G R, Hirschi K D. Genetic manipulation of vacuolar proton pumps and transporters[J]. Plant Physiology,2002,129(3):967-973
[82] Ren Z, Liu Y, Kang D, et al. Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2015,123(3):569-578
[83] 冯雪, 王甜甜, 郝怀庆, 等. 高粱SbHKTs基因的克隆及其在拟南芥中的功能验证[J]. 植物生理学报,2015,51(9):1513-1523
[84] Byrt C S, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+accumulation in bread wheat[J]. The Plant Journal,2014,80(3):516-526
[85] 李剑,张金林,王锁民,等. 小花碱茅HKT2;1基因全长cDNA的克隆与生物信息学分析[J]. 草业学报,2013(2):140-149
[86] 张琳,郭强,毛培春,等. 长穗偃麦草HKT1;4基因片段的克隆及序列分析[J]. 基因组学与应用生物学,2014,33(4):869-874
[87] Gassmann W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1[J]. Plant journal,1996,10(5):869-882
[88] Mäser P, Eckelman B, Vaidyanathan R, et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1[J]. FEBS letters,2002,531(2):157-161
[89] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proceedings of the national academy of sciences,2000,97(12):6896-6901
[91] 张莹. 互花米草SOS1基因和HKT1基因的克隆及耐盐转基因水稻研究[D]. 烟台:烟台大学,2012
[92] 郭强. PtSOS1、PtAKT1在盐生植物小花碱茅抗盐中的作用[D]. 兰州:兰州大学,2013
[93] Ma Q, Li Y X, Yuan H J, et al. ZxSOS1 is essential for long-distance transport and spatial distribution of Na+ and K+ in the xerophyte Zygophyllum xanthoxylum[J]. Plant and soil, 2014,374(1-2):661-676
[94] Shi H, Quintero F J, Pardo J M, et al. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants[J].The Plant Cell,2002,14(2):465-477
[95] Shi H, Lee B, Wu S J, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nature biotechnology,2003,21(1):81-85
[96] Oh D H, Lee S Y, Bressan R A, et al. Intracellular consequences of SOS1 deficiency during salt stress[J]. Journal of Experimental Botany,2010,61(4):1205-1213
[97] Bluwald E, Poole R J. Salt Tolerance in suspension cultures of suger beet:induction of Na+/H+ antiport activity at the tonoplast by growth in salt[J]. Plant Physiology,1987,83:884-887
[98] Metwali E M R, Soliman H I A, Fuller M P, et al. Molecular cloning and expression of a vacuolar Na+/H+ antiporter gene (AgNHX1) in fig (Ficus carica L.) under salt stress[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2015,123(2):377-387
[99] 周爱民,卜媛媛,张欣欣,等. 过量表达星星草(Puccinellia tenuiflora)液泡型H+-ATP酶c亚基基因提高转基因酵母的耐盐性[J]. 分子植物育种,2015,13(2):409-414
[100] Li Z, Baldwin C M, Hu Q, et al. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)[J]. Plant, cell & environment,2010,33(2):272-289
[101] Bao A K, Wang S M, Wu G Q, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Science,2009,176(2):232-240
[102] Guo S, Yin H, Zhang X, et al. Molecular cloning and characterization of a vacuolar H+-pyrophos-phatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis[J]. Plant molecular biology,2006,60(1):41-50
[103] Rodríguez-Rosales M P, Jiang X, Gálvez F J, et al. Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization[J]. New Phytologist,2008,179(2):366-377 |