[1] Jia B R,Zhou G S,Wang F Y,et al. Partitioning root and microbial contributions to soil respiration in Leymus chinensis populations[J]. Soil Biology and Biochemistry,2006,38(4):653-660
[2] Solomon S,Qin D,Manning M,et al. Climate Change 2007:The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom, New York, NY, USA:Cambridge University Press, 2007
[3] Li X B,Li G Q,Wang H,et al. Influence of meadow changes on net primary productivity:A case study in a typical steppe area of XilinGol of Inner Mongolia in China[J]. Geosciences Journal,2015,19(3):561-573
[4] Deng L,Sweeney S,Shangguan Z P. Grassland responses to grazing disturbance:plant diversity changes with grazing intensity in a desert steppe[J]. Grass and Forage Science,2014,69(3):524-533
[5] Melillo J M,Steudler P A,Aber J D,et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science,2002,298(5601):2173-2176
[6] Wander M M,Traina S J,Stinner B R,et al. Organic and conventional management effects on biologically active soil organic matter pools[J]. Soil Science Society of America Journal,1994,58(4):1130-1139
[7] 马秀枝. 开垦和放牧对内蒙古草原土壤碳库和温室气体通量的影响[D]. 北京:中国科学院研究生院植物研究所,2006
[8] Mcsherry M,Ritchie,Mark E. Effects of grazing on grassland soil carbon:a global review[J]. Global Change Biology,2013,19(5):1347-1357
[9] Zhou G Y,Zhou X H,He Y H,et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems:a meta-analysis[J]. Global Change Biology,2017,23(3),1167-1179
[10] Balser T C,Wixon D L. Investigating biological control over soil carbon temperature sensitivity[J]. Global Change Biology,2009,15(12):2935-2949
[11] Vargas R,Carbone M S,Reichstein M,et al. Frontiers and challenges in soil respiration research:from measurements to model-data integration[J]. Biogeochemistry,2011,102(1-3):1-13
[12] 杨毅,黄玫,刘洪升,等. 土壤呼吸的温度敏感性和适应性研究进展[J]. 自然资源学报,2011,26(10):1811-1820
[13] 邓钰,柳小妮,闫瑞瑞,等. 呼伦贝尔草甸草原土壤呼吸及其影响因子对不同放牧强度的响应[J]. 草业学报,2013,22(2):22-29
[14] 杨合龙,孙宗玖,范燕敏,等. 短期放牧对昭苏草甸草原土壤活性有机碳组分的影响[J]. 草业科学,2013,30(12):1926-1932
[15] 赵娜,庄洋,赵吉. 放牧和补播对草地土壤有机碳和微生物量碳的影响[J]. 草业科学,2014,31(3):367-374
[16] Holt J A. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia[J]. Applied Soil Ecology,1997,5(2):143-149
[17] 李世卿,王先之,郭正刚,等. 短期放牧对青藏高原东北边缘高寒草甸土壤及微生物碳氮含量的影响[J]. 中国草地学报,2013,35(1):55-60+66
[18] 吴启华,李红琴,张法伟,等. 短期牧压梯度下高寒杂草类草甸植被/土壤碳氮分布特征[J]. 生态学杂志,2013,32(11):2857-2864
[19] 孙宗玖,李培英,杨合龙,等. 短期放牧对昭苏草甸草原土壤轻组及颗粒碳氮的影响[J]. 水土保持学报,2014,28(5):147-152
[20] Han G D,Hao X Y,Zhao M L,et al. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia[J]. Agriculture,Ecosystems&Environment,2008,125:21-32
[21] Fu G,Zhang X Z,Yu C Q,et al. Response of Soil Respiration to Grazing in an Alpine Meadow at Three Elevations in Tibet[J]. The Scientific World Journal,2014:9
[22] Pei S F,Fu H,Wan C G. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China[J]. Agriculture Ecosystems and Environment,2008,124:33-39
[23] 陈文青. 不同放牧方式对羊草草原生态系统碳固持的影响机制[D]. 北京:中国农业大学博士学位论文,2015
[24] Steffens M,Koelbl A,Totsche K U,et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China)[J]. Geoderma,2008,143(1-2):63-72
[25] Wiesmeier M,Barthold F K,Blank F B,et al. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem[J]. Plant and Soil,2011,340(1-2):7-24
[26] Li X D,Zhang C P,Fu Hua,et al. Grazing exclusion alters soil microbial respiration, root respirationand the soil carbon balance in grasslands of the Loess Plateau,northern China[J]. Soil Science and Plant Nutrition,2013,59(6):877-887
[27] Chen J B,Hou F J,Chen X J,et al. Stocking Rate and Grazing Season Modify Soil Respiration on the Loess Plateau, China[J]. Rangeland Ecology and Management,2015,68(1):48-53
[28] Wiesmeier M,Munro S,Barthold F,et al. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China[J]. Global Change Biology,2015,21(10):3836-3845
[29] Teague W R,Dowhower S L,Baker S A,et al. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie[J]. Agriculture, Ecosystems and Environment,2011,141(3-4):310-322
[30] Leifeld J,Fuhrer J. Long-term management effects on soil organic matter in two cold,high-elevation grasslands:clues from fractionation and radiocarbon dating[J]. European Journal of Soil Science,2009,60(2):230-239
[31] Herfurth D,Vassal N,Louault F,et al. How does soil particulate organic carbon respond to grazing intensity in permanent grasslands?[J]. Plant and Soil, 2015,394(1-2):239-255
[32] Martinsen V,Mulder J,Austrheim G,et al. Carbon storage in low-alpine grassland soils:effects of different grazing intensities of sheep[J]. European Journal of Soil Science,2011,62(6):822-833
[33] Fu G,Zhang X Z,Yu C Q,et al. Response of Soil Respiration to Grazing in an Alpine Meadow at Three Elevations in Tibet[J]. Scientific World Journal, 2014,265-142
[34] Zhou G Y,Zhou X H,He Y H,et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems:a meta-analysis[J]. Global Change Biology,2017,23(3):1167-1179
[35] 贺云龙,齐玉春,彭琴,等. 外源碳输入对陆地生态系统碳循环关键过程的影响及其微生物学驱动机制[J]. 生态学报,2017,37(2):358-366
[36] Kuzyakov Y,Domanski G. Carbon input by plants into the soil. Review[J]. Journal of Plant Nutrition and Soil Science,2000,163(4):421-431
[37] Mapfumo E,Naeth M A,Baron V S,et al. Grazing impacts on litter and roots:perennial versus annual grasses[J]. Journal of Rangeland Management,2002, 55(1):16-22
[38] Bai W M,Fang Y,Zhou M,et al. Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe[J]. Agriculture, Ecosystems and Environment,2015,200:143-150
[39] Deng L,Sweeney S,Shangguan Z P. Grassland responses to grazing disturbance:plant diversity changes with grazing intensity in a desert steppe[J]. Grass and Forage Science,2014,69(3):524-533
[40] Pastor J,Naiman R J. Selective foraging and ecosystem processes in boreal forests[J]. The American Naturalist,1992,139(4):690-705
[41] Dunne T,Western D,Dietrich W E. Effects of cattle trampling on vegetation,infiltration,and erosion in a tropical rangeland[J]. Journal of Arid Environments,2011,75(1):58-69
[42] Kleinebecker T,Weber H,Hoelzel N. Effects of grazing on seasonal variation of aboveground biomass quality in calcareous grasslands[J]. Plant Ecology, 2011,212(9):1563-1576
[43] Augustine D J,Mcnaughton S J. Ungulate effects in the functional species composition of plant communities:herbivore selectivity and plant tolerance[J]. Journal of Wildlife Management,1998,62(4):1165-1183
[44] Van Veen J A,Paul E A. Organic carbon dynamics in grassland soils,background information and computer simulation[J]. Canadian Journal of Soil Science,1981,61(2):185-201
[45] Gao Y Z,Giese M,Lin S,et al. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity[J]. Plant and Soil,2008,307(1-2):41-50
[46] Patton B D,Dong X J,Nyren P E,et al. Effects of grazing intensity, precipitation, and temperature on forage production[J]. Rangeland Ecol Manage,2007,60(6):656-665
[47] 吴艳玲. 短花针茅草原群落特征与空间异质性对放牧强度季节调控的响应[D]. 呼和浩特:内蒙古农业大学,2012
[48] Schonbach P,Wan H W,Gierus M,et al. Grassland responses to grazing:effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem[J]. Plant and Soil,2011,340(1-2):103-115
[49] Biondini M E,Patton B D,Nyren P E. Grazing intensity and ecosystem processes in a northern mixed-grass prairie, USA[J]. Ecology Application,1998, 8(2):469-479
[50] Matches A G. Plant responses to grazing:A review[J]. Journal of Production Agriculture,1992,5(1):1-7
[51] Hilbert D W,Swift D M,Detling J K,et al. Relative growth rates and the grazing optimization hypothesis[J]. Oecologia,1981,51(1):14-18
[52] Zhao Y,Peth S,Krummelbein J,et al. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland[J]. Ecology Modelling, 2007,205(1-2):241-254
[53] Milchunas D G,Varnamkhasti A S,Lauenroth W K,et al. Forage quality in relation to long-term grazing history, current-year defoliation,and water-resource[J]. Oecologia,1995,101(3):366-374
[54] Zhao W,Chen S P,Lin G H. Compensatory growth responses to clipping defoliation in Leymus Chinensis (Poaceae) under nutrient addition and water deficiency conditions[J]. Plant Ecology,2008,196(1):85-99
[55] Ferraro D O,Oesterheld M. Effect of defoliation on grass growth:a quantitative review[J]. Oikos,2002,98(1):125-133
[56] Maarel E,Titlyanova A. Above-ground and below-ground biomass relations in steppes under different grazing intensities[J]. Oikos,1989,56(3):364-370
[57] Coleman S W. Plant-animal interface[J]. Journal of Production Agriculture,1992,5(1):7-13
[58] Stahlheber K A,Antonio C M. Using livestock to manage plant composition:A meta-analysis of grazing in California Mediterranean grasslands[J]. Biological Conservation,2013,157:300-308
[59] Jing Z B,Cheng J M,Su J S,et al. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland[J]. Ecological Engineering,2014,64:171-178
[60] Komac B,Domenech M,Fanlo R. Effects of grazing on plant species diversity and pasture quality in subalpine grasslands in the eastern Pyrenees (Andorra):Implications for conservation[J]. Journal for Nature Conservation,2014,22(3):247-255
[61] 张新杰. 短花针茅荒漠草原生态系统碳交换对不同载畜率的响应[D]. 呼和浩特:内蒙古农业大学,2015
[62] Irisarri J G N,Derner J D,Porensky L M,et al. Grazing intensity differentially regulates ANPP response to precipitation in North American semiarid grasslands[J]. Ecological Applications,2016,26(5):1370-1380
[63] 王艳芬,汪诗平. 不同放牧率对内蒙古典型草原牧草地上现存量和净初级生产力及品质的影响[J]. 草业学报,1999,8(1):15-20
[64] Ren H Y,Han G D,Ohm M,et al. Do sheep grazing patterns affect ecosystem functioning in steppe grassland ecosystems in Inner Mongolia?[J]. Agriculture, Ecosystems and Environment,2015,213:1-10
[65] Nguyen C. Rhizodeposition of organic C by plants:mechanisms and controls[J]. Agronomie,2003,23(5-6):375-396
[66] Augustine D J,Dijkstra F A,Hamilton E W,et al. Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO2[J]. Oecologia,2011,165(3):755-770
[67] 胡静. 放牧对典型草原优势植物大针茅根际土壤养分和根际微生物的影响[D]. 呼和浩特:中国农业科学院草原所,2015
[68] Holland J N,Cheng W X,Crossley D A. Herbivore-induced changes in plant carbon allocation:assessment of below-ground C fluxes using carbon-14[J]. Oecologia,1996,107(1):87-94
[69] 魏晓军. 放牧强度对典型草原大针茅根际土壤的影响[D]. 呼和浩特:内蒙古农业大学,2011
[70] Paterson E,Sim A. Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation[J]. Plant and Soil, 1999,216(1-2):155-164
[71] Mikola J,Kytoviita M M. Defoliation and the availability of currently assimilated carbon in the Phleun pratense rhizosphere[J]. Soil Biology and Biochemistry,2002,34(12):1969-1874
[72] 武春燕. 内蒙古典型草原不同放牧强度下土壤微生物与土壤肥力关系的研究[D]. 呼和浩特:内蒙古师范大学,2008
[73] 萨茹拉,侯向阳,陈海军,等. 放牧强度对典型草原土壤微生物特征的影响[J]. 中国草地学报,2013,35(5):86-91
[74] Aldezabala A,Moraguesb L,Odriozolaa I,et al. Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland[J]. Applied Soil Ecology,2015,96:251-260
[75] 陈海军,王明玖,韩国栋,等. 不同强度放牧对贝加尔针茅草原土壤微生物和土壤呼吸的影响[J]. 干旱区资源与环境,2008,44(4):165-169
[76] 曹淑宝,刘全伟,王立群,等. 短期放牧对草甸草原土壤微生物与土壤酶活性的影响[J]. 微生物学通报,2012,39(6):741-748
[77] 高雪峰,武春燕,韩国栋. 不同利用强度下草原土壤微生物的生物量和数量的动态研究[J]. 干旱区资源与环境,2011,25(5):188-191
[78] 邵玉琴,杨桂霞,崔宇新,等. 锡林郭勒典型草原不同放牧强度下土壤微生物数量的分布特征[J]. 中国草地学报,2011,33(2):63-68
[79] 谭红妍,闫瑞瑞,闫玉春,等. 不同放牧强度下温性草甸草原土壤微生物群落结构PLFAs分析[J]. 草业学报,2015,24(3):115-121
[80] Qu T B,Du W C,Yuan X,et al. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland[J]. Plos One,2016,11(7):e0159680
[81] 臧晓琳,张洪芹,王鑫朝,等. 放牧对冷蒿根际土壤微生物群落结构多样性的影响[J]. 草地学报,2017,25(5):982-992
[82] Bhullar G S,Edwards P J,Olde V H. Influence of different plant species on methane emissions from soil in a restored Swiss wetland[J]. Plos One,2014,9(2):e89588
[83] Hinsinger P. Bioavailability of soil in oraganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and soil,2001,237(2):173-195
[84] Douterelo I,Goulder R,Lillie M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands:Implications for the in situ preservation of archaeological remains[J]. Applied Soil Ecology,2010,44(3):219-227
[85] Nautiyal C S,Chauhan P S,Bhatia C R. Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem[J]. Soil and Tillage Research,2010,109(2):55-60
[86] 牛得草,江世高,秦燕,等. 围封与放牧对土壤微生物和酶活性的影响[J]. 草业科学,2013,30(4):528-534
[87] 闫瑞瑞,闫玉春,辛晓平,等. 不同放牧梯度下草甸草原土壤微生物和酶活性研究[J]. 生态环境学报,2011,20(2):259-265
[88] Esch E H,Hernandez D L,Pasari J R,et al. Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland[J]. Plant and Soil,2013,366(1-2):671-682
[89] Hewins D B,Fatemi F,Adams B,et al. Grazing, regional climate and soil biophysical impacts on microbial enzyme activity in grassland soil of western Canada[J]. Pedobiologia 2015,8(5-6):201-209
[90] Huxman T E,Snyder K A,Tissue D,et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems[J]. Oecologia,2004,141(2):254-268
[91] Casals P,Lopez-Sangil L,Carrara A,et al. Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean dehesa[J]. Global Biogeochemical Cycles,2011,25:3012
[92] Kuzyakov Y. Response to the comments by Peter Hogberg, Nina Buchmann and David J. Read on the review 'Sources of CO2 efflux from soil and review of partitioning methods'[J]. Soil Biology and Biochemistry,2006,38(9):2999-3000
[93] Yan L,Chen S,Huang J H,et al. Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe[J]. Global Change Biology,2010,16(8):2345-2357
[94] Wang Z,Ji L,Hou X Y,et al. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management[J]. PLOS ONE,2016,11(1):e0147987
[95] 马涛. 放牧对内蒙古锡林河流域羊草草原土壤呼吸的影响[D]. 杨凌:西北农林科技大学,2008
[96] 梁茂伟. 内蒙古典型草原不同利用强度群落类型碳循环机制研究[D]. 呼和浩特:内蒙古大学,2014
[97] 曹娜. 放牧强度对半干旱草原土壤N2、N2O、NO、CO2和CH4排放的影响[D]. 杨凌:西北农林科技大学,2015
[98] 阿木日吉日嘎拉,红梅,韩国栋,等. 不同放牧强度对短花针茅荒漠草原土壤呼吸的影响[J]. 土壤通报,2014,44(2):321-327
[99] 朱慧森,李刚,董宽虎,等. 放牧对赖草草地土壤呼吸日、季动态的影响[J]. 植物学报,2015,50(5):605-613
[100] Cao G,Tang Y,Mo W,et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau[J]. Soil Biology and Biochemistry,2004, 36(2):237-243
[101] Fu G,Zhang X Z,Yu C Q,et al. Response of Soil Respiration to Grazing in an Alpine Meadow at Three Elevations in Tibet[J]. The Scientific World Journal,2014:265142
[102] Haferkamp M R,Macne M D. Grazing Effects on Carbon Dynamics in the Northern Mixed-Grass Prairie[J]. Environmental Manafgement,2004,33(1):462-474
[103] Peri P L,Bahamonde H,Christiansen R. Soil respiration in Patagonian semiarid grasslands under contrasting environmental and use conditions[J]. Journal of Arid Environments,2015,119:1-8
[104] 周莉,李保国,周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展,2005,20(1):99-105
[105] Yang Y H,Fang J Y,Ma W H,et al. Soil carbon stock and its changes in northern China's grassland from 1980s to 2000s[J]. Global Change Biology,2010, 16(11):3036-3047
[106] Zhao D S,Wu S H,Dai E F,et al. Effect of climate change on soil organic carbon in Inner Mongolia[J]. International Journal of Climatology,2015,35(3):337-347
[107] Frey S D,Drijber R,Smith H,et al. Microbial biomass, functional capacity, and community structure after 12 years of soil warming[J]. Soil Biology and Biochemiatry,2008,40(11):2904-2907
[108] Zhao Y,Peth S,Reszkowska A,et al. Response of soil moisture and temperature to grazing intensity in a Leymus chinensis steppe, Inner Mongolia[J]. Plant and Soil,2011,340(1-2):89-102
[109] Gan L,Peng X,Peth S,et al. Effects of grazing intensity on soil thermal properties and heat flux under Leymus chinensis and Stipa grandis vegetation in Inner Mongolia, China[J]. Soil and Tillage Research,2012,118:147-158
[110] Odriozola I,García-Baquero G,Laskurain N A,et al. Livestock grazing modifies the effect of environmental factors on soil temperature and water content in a temperate grassland[J]. Geoderma,2014,235:347-354
[111] Bremer D J,Ham J M,Owensby C E. Responses of soil respiration to clipping and grazing in a tallgrass prairie[J]. Journal of Environmental Quality,1998, 27(6):1539-1548
[112] Li W,Huang H Z,Zhang Z N,et al. Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow[J]. Soil Science and Plant Nutrition,2011,11(4):27-39
[113] Zhu L L,Johnson D A,Wang W G,et al. Grazing effects on carbon fluxes in a Northern China grassland[J]. Journal of Arid Environments,2015,114:41-48
[114] Greenwood K L,McKenzie B M. Grazing effects on soil physical properties and the consequences for pastures:a review[J]. Australian Journal of Experimental,2001,41(8):1231-1250
[115] Donkor N T,Gedir JV,Hudson R J,et al. Impacts of grazing systems on soil compaction and pasture production in Alberta[J]. Canadian Journal of Soil Science,2002,82(1):1-8
[116] Coronato F R,Bertiller M B. Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia[J]. Journal of Arid Environment,1996,34(1):1-9
[117] Parton W J,Schimel D S,Cole C V,et al. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands[J]. Soil Science Society of America Journal,1987,51(5):1173-1179
[118] Hook P B,Burke I C. Biogeochemistry in a shortgrass landscape:Control by topography, soil texture, and mi croclimate[J]. Ecology,2000,81(10):2686-2703
[119] 贾树海,王春枝,孙振涛,等. 放牧强度和时期对内蒙古草原土壤压实效应的研究[J]. 草地学报,1999,7(3):217-222
[120] Villamil M B,Amiotti N M,Peinemann N. Soil degradation related to overgrazing in the semi-arid southern Caldenal area of Argentina[J]. Soil Science, 2001,166(7):441-452
[121] 霍艳双,杨波,杨雪栋,等. 草地土壤有机碳研究进展[J]. 中国草地学报,2014,36(6):90-96
[122] 王向涛,张世虎,陈懂懂,等. 不同放牧强度下高寒草甸植被特征和土壤养分变化研究[J]. 草地学报,2010,18(4):510-516
[123] 闫瑞瑞,卫智军,辛晓平,等. 放牧制度对荒漠草原生态系统土壤养分状况的影响[J]. 生态学报,2010,30(1):43-51
[124] Six J,Elliott E T,Paustian K. Soil macroaggregate turnover and microaggregate formation:A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry,2000,32(14):2099-2103
[125] 蔡晓布,彭岳林,于宝政. 西藏高寒草原土壤团聚体有机碳变化及其影响因素分析[J]. 农业工程学报,2013,29(11):92-99
[126] Shrestha G,Stahi P D. Carbon accumulation and storage in semi-arid sagebrush steppe:Effects of long-term grazing exclusion[J]. Agriculture Ecosystems and Environment,2008,125(1-4):173-181
[127] 高永恒. 不同放牧强度下高山草甸生态系统碳氮分布格局和循环过程[D]. 北京:中国科学院研究生院,2007
[128] 刘新民,陈海燕,峥嵘,等. 内蒙古典型草原羊粪和牛粪的分解特征[J]. 应用与环境生物学报,2011,17(06):791-796
[129] 姜世成,周道玮. 牛粪堆积对草地影响的研究[J]. 草业学报,2006,15(4):30-35
[130] 鱼小军. 牦牛粪维系青藏高原高寒草地健康的作用机制[D]. 兰州:甘肃农业大学,2010
[131] 王旭丽. 家畜粪种子库特征及牦牛粪存留时间对高寒草地植被变化的作用[D]. 兰州:兰州大学,2017
[132] Yoshihara Y,Sasaki T,Okuro T,et al. Cross-spatial-scale patterns in the facilitative effect of shrubs and potential for restoration of desert steppe[J]. Ecological Engineering,2010,36(12):1719-1724
[133] 王兴,宋乃平,杨新国,等. 家畜排泄物归还对天然灌丛草地土壤-植被影响的研究进展[J]. 贵州农业科学,2013,41(08):127-131
[134] 何奕忻,孙庚,罗鹏,等. 牲畜粪便对草地生态系统影响的研究进展[J]. 生态学杂志,2009,28(2):322-328
[135] Liang D F,Niu K C,Zhang S T. Interacting effects of yak dung deposition and litter quality on litter mass loss and nitrogen dynamics in Tibetan alpine grassland[J]. Grass and Forage Science,2018,73(1):123-131
[136] Aarons S R,O'Connor C R,Gourley C J P. Dung decomposition in temperate dairy pastures:Changes in soil chemical properties[J]. Soil Research,2004,42(1):353-353 |