[1] 许宏斌,辛晓平,宝音陶格涛,等. 放牧对呼伦贝尔羊草草甸草原生物量分布的影响[J]. 草地学报,2020,28(3):768-774 [2] 穆少杰,周可新,陈奕兆,等. 草地生态系统碳循环及其影响因素研究进展[J]. 草地学报,2014,22(3):439-447 [3] 张盼弟. 温带草甸草原碳循环组分分析研究[D].北京:中国农业科学院,2014:16-17 [4] CHEN Y,JU W,GROISMAN P,et al. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe[J]. Environmental Research Letters,2017,12(11):115005 [5] LI M,CUI Y,FU Y,et al. Simulating the Potential Sequestration of Three Major Greenhouse Gases in China’s Natural Ecosystems[J]. Forests,2020,11(2):12368 [6] 沈海花,朱言坤,赵霞,等. 中国草地资源的现状分析[J].科学通报,2016,61(2):139-154 [7] 丁成翔,杨晓霞,董全民. 青藏高原高寒草原放牧方式对植被、土壤及微生物群落的影响[J]. 草地学报,2020,28(1):159-169 [8] LE QUERE C,MORIARTY R,ANDREW R M,et al. Global Carbon Budget 2015[J]. Earth System Science Data,2015,7(2):349-396 [9] 白永飞,潘庆民,邢旗. 草地生产与生态功能合理配置的理论基础与关键技术[J]. 科学通报,2016,61(2):201-212 [10] 中华人民共和国环境保护部,2005年中国环境状况公报[N],2006-06-05(1) [11] AHMED I A A.放牧强度对呼伦贝尔草甸草原地上净初级生产力的影响[D].北京:中国农业科学院,2021:20-21 [12] 赵哈林,赵学勇,张铜会. 我国北方农牧交错带沙漠化的成因、过程和防治对策[J]. 中国沙漠,2000(S1):23-29 [13] 陈先江,王彦荣,侯扶江. 草地生态系统温室气体排放机理及影响因素[J]. 草业科学,2011,28(5):722-728 [14] 郭然,王效科,逯非,等. 中国草地土壤生态系统固碳现状和潜力[J]. 生态学报,2008,(2):862-867 [15] AHLSTRÖM A,RAUPACH M R,SCHURGERS G,et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink[J]. Science,American Association for the Advancement of Science,2015,348(6237):895-899 [16] LI C,ZHANG C,LUO G, et al. Carbon stock and its responses to climate change in Central Asia[J]. Global Change Biology,2015,21(5):1951-1967 [17] 戴尔阜,黄宇,吴卓,等. 内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J]. 地理学报,2016,71(1):21-34 [18] RAICH J W,SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B,1992,44(2):81-99 [19] MONTEITH J L. Solar radiation and productivity in tropical ecosystems[J]. Journal of applied ecology,1972,9(3):747-766 [20] PARTON W J,SCURLOCK J M O,OJIMA D S, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global biogeochemical cycles,1993,7(4):785-809 [21] DIXON G E. Essential FVS:A user‘s guide to the Forest Vegetation Simulator[M]. Fort Collins, CO:U. S. Department of Agriculture,Forest Service, Forest Management Service Center,2002:27-28 [22] KURZ W A,DYMOND C C,WHITE T M, et al. CBM-CFS3:A model of carbon-dynamics in forestry and land-use change implementing IPCC standards[J]. Ecological Modelling,2009,220(4):480-504 [23] MASERA O R, GARZA-CALIGARIS J F, KANNINEN M, et al. Modeling carbon sequestration in afforestation, agroforestry and forest management projects:the CO2FIX V. 2 approach[J]. Ecological modelling, 2003, 164(2-3):177-199 [24] FENG X,FU B,LU N,et al. How ecological restoration alters ecosystem services:an analysis of carbon sequestration in China’s Loess Plateau[J]. Scientific Reports,Nature Publishing Group,2013,3(1):491-502 [25] SHIYOMI M,AKIYAMA T,WANG S, et al. A grassland ecosystem model of the Xilingol steppe,Inner Mongolia,China[J]. Ecological Modelling,2011,222(13):2073-2083 [26] CHEN J,JOHN R,SHAO C,et al. Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau[J]. Environmental Research Letters,2015,10(8):085003 [27] CHEN Y,SUN Z,QIN Z,et al. Modeling the regional grazing impact on vegetation carbon sequestration ability in Temperate Eurasian Steppe[J]. Journal of Integrative Agriculture,2017,16(10):2323-2336 [28] ZHU W,PAN Y,HE H,et al. Simulation of maximum light use efficiency for some typical vegetation types in China[J]. Chinese Science Bulletin,2006,51(4):457-463 [29] RAICH J W,POTTER C S,BHAGAWATI D. Interannual variability in global soil respiration,1980-94[J]. Global Change Biology,2002,8(8):800-812 [30] 巴图娜存,胡云锋,艳燕,等. 1970年代以来锡林郭勒盟草地资源空间分布格局的变化[J]. 资源科学,2012,34(6):1017-1023 [31] 冯静蕾,扎玛,曹建民,等. 内蒙古草原放牧管理制度对牧民生计的影响——基于内蒙古锡林郭勒盟4个嘎查的调查[J]. 中国草地学报,2014,36(2):1-5 [32] 付友芳,于永强,黄耀. 2000-2007年内蒙古锡林郭勒盟草地土壤有机碳变化估计[J]. 草业科学,2011,28(9):1589-1597 [33] HASITUYA,CHEN Z X,WU W B,et al. Estimation of above-ground biomass carbon storage in Hulunbeier grassland based on remotely sensed data[C]. 2015 Fourth International Conference on Agro-Geoinformatics,IEEE,2015:158-162 [34] ZHAO F,XU B,YANG X,et al. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP):A Case Study in the Xilingol Grassland of Northern China[J]. Remote Sensing,2014,6(6):5368-5386 [35] GANG C,ZHANG J,LI J. The Advances in the Carbon Source/Sink Researches of Typical Grassland Ecosystem in China[J]. Procedia Environmental Sciences,2011(10):1646-1653 [36] POTTER C S,RANDERSON J T,FIELD C B,et al. Terrestrial ecosystem production:A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811-841 [37] 朱文泉,潘耀忠,张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报,2007,31(3):413-424 [36] POTTER C S,RANDERSON J T,FIELD C Bet al. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China[J]. Atmospheric Research,2019(223):24-38 [39] POTTER C,KLOOSTER S,GENOVESE V. Net primary production of terrestrial ecosystems from 2000 to 2009[J]. Climatic Change,2012,115(2):365-378 [40] LI X,LI G,WANG H,et al. Influence of meadow changes on net primary productivity:a case study in a typical steppe area of XilinGol of Inner Mongolia in China[J].Geosciences Journal,2015,19(3):561-573 [41] ZHAO F,XU B,YANG X, et al. Modelling and analysis of net primary productivity and its response mechanism to climate factors in temperate grassland,northern China[J]. International journal of remote sensing,2019,40(5-6):2259-2277 [41] ZHAO F,XU B,YANG X,. Remote sensing of protected areas to derive baseline vegetation functioning characteristics[J]. Journal of Vegetation Science,2004,15(5):711-720 [43] ZHANG L,GUO H,JIA G, et al. Net ecosystem productivity of temperate grasslands in northern China:An upscaling study[J]. Agricultural and Forest Meteorology,2014(184):71-81 [44] MACK M C,SCHUUR E A G,BRET-HARTE M S,et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization[J]. Nature,2004,431(7007):440-443 [45] ZHOU G,ZHANG X. A Natural vegetation NPP model[J].Acta Phytoecologica Sinica,1995,19(3):193-200 [46] THORNTHWAITH C W. 1948,An approach toward a rational classification of climate[J]. Geographical Review.1948,38(1):57-94 [47] SADEGHI H, RAEINI M G N. Capability investigation of carbon sequestration in Artemisia aucheri Bioss[J]. International Journal of Environmental Science and Technology,2016,13(1):159-164 [48] TOMAR U,BAISHYA R. Moisture regime influence on soil carbon stock and carbon sequestration rates in semi-arid forests of the National Capital Region,India[J]. Journal of Forestry Research,2020,31(6):2323-2332 [49] YU D,SHI P,SHAO H, et al. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model[J]. International Journal of Applied Earth Observation and Geoinformation,2009,30(18):4851-4866 [50] BAO G,BAO Y H,QIN Z H,et al. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model[J]. International Journal of Applied Earth Observation and Geoinformation,2016(46):84-93 [51] XU X,LI F,LIN Z D,et al. Holocene fire history in China:Responses to climate change and human activities[J]. Science of The Total Environment,2021,753(20):142019 [52] LYONS W B,NEZAT C A,WELCH K A, et al. Fossil Fuel Burning in Taylor Valley,Southern Victoria Land,Antarctica:Estimating the Role of Scientific Activities on Carbon and Nitrogen Reservoirs and Fluxes[J]. Environmental Science & Technology,2000,34(9):1659-62 [53] LI X,WANG Y,REYNOLDS M E,et al. Long-term agricultural activity affects anthropogenic soil on the Chinese Loess Plateau[J]. Arid Land,2017,9(5):678-87 [54] 王玮,邬建国,韩兴国. 内蒙古典型草原土壤固碳潜力及其不确定性的估算[J]. 应用生态学报,2012,23(1):29-37 [55] CHEN W Q,HUANG D,LIU N,et al. Improved grazing management may increase soil carbon sequestration in temperate steppe[J]. Scientific Reports,2015(5):1623-1630 |