[1] BARNES D K, SMITHD M, STUCKERR E, et al. Fall dormancy in alfalfa: a valuable predictive tool [to predict winter hardiness and cultivar adaptation in Minnesota] [R]. USDA, St. Paul, MN: Agricultural Reviews and Manuals, Science and Education Administration, 1979 [2] TEUBER L R. Climate and dormancy data reduce need for many regional alfalfa trials[J]. International Journal of Remote Sensing, 1984, 27(6): 1135-1158 [3] TEUBER L R, TAGGARD K L, GIBBS L K, et al. Fall dormancy. In standard tests to characterize alfalfa cultivars[M]. Beltsville, MD: North American Alfalfa Improvement Conference, 1998: 1-2 [4] 赵祥, 岳文斌, 任有蛇, 等. 不同秋眠级苜蓿品种数量性状的相关分析[J]. 草地学报, 2005, 13(4): 282-286 [5] STOUT D G & HALL J W. Fall growth and winter survival of alfalfa in interior British Columbia [J]. Canadian Journal of Plant Science, 1989, 69(2): 491-499 [6] TYSDAL H M. Influence of light, temperature, and soil moisture on the hardening process in alfalfa[J]. Journal of Agricultural Research, 1933(46): 483-515 [7] SHIH S C, JUNG G A, SHELTON D C. Effects of temperature and photoperiod on metabolic changes in alfalfa in relation to cold hardiness [J]. Crop Science, 1967, 7(4): 385-389 [8] WANG C, MA B L, HAN J, et al. Photoperiod Effect on Phytochrome and Abscisic Acid in Alfalfa Varieties Differing in Fall Dormancy [J]. Journal of Plant Nutrition, 2008, 31(7): 1257-1269 [9] CUNNINGHAM S M, NADEAU P, CASTONGUAY Y, et al. Raffinose and Stachyose Accumulation, Galactinol Synthase Expression, and Winter Injury of Contrasting Alfalfa Germplasms [J]. Crop Science, 2003, 43(2): 562-570 [10] URANO K, MARUYAMA K, OGATA Y, et al. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics [J]. Plant Journal for Cell & Molecular Biology, 2008, 57(6): 1065-1078 [11] YVES C, PAUL N. Enzymatic Control of Soluble Carbohydrate Accumulation in Cold-Acclimated Crowns of Alfalfa [J]. Crop Science, 1998, 38(5): 1183-1189 [12] CUNNINGHAMS M, VOLENEC J J, TEUBERL R. Plant Survival and Root and Bud Composition of Alfalfa Populations Selected for Contrasting Fall Dormancy [J]. Crop Science, 1998, 38(4): 962-969 [13] HAAGENSON D M, CUNNINGHAM S M, VOLENEC J J. Root Physiology of Less Fall Dormant, Winter Hardy Alfalfa Selections [J]. Crop Science, 2003, 43(4): 1441-1447 [14] 卢欣石. 中国苜蓿审定品种秋眠性研究[J]. 中国草地学报, 1998(3): 1-5 [15] 王成章, 韩锦峰, 史莹华, 等. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(1): 133-141 [16] WANG C, MAB L, YAN X, et al. Yields of Alfalfa Varieties with Different Fall-Dormancy Levels in a Temperate Environment [J]. Agronomy Journal, 2009, 101(5): 1146-1152 [17] 杜红旗, 粱明根, 樊文娜, 等. 自然环境下不同秋眠型苜蓿PHYA和PHYB mRNA表达量的变化[J]. 草地学报, 2014, 22(3): 572-578 [18] BROUWER D J, DUKE S H, OSBOM T C. Mapping genetic factors associated with winter hardiness, fall growth, and freezing injury in autotetraploid alfalfa [J]. Crop Science, 2000, 40(5): 1387-1396 [19] FAN W, ZHANG S, DU H, et al. Genome-Wide Identification of Different Dormant Medicago sativa L. MicroRNAs in Response to Fall Dormancy [J]. PLoS ONE, 2014(9): e114612 [20] ZHANG S, SHI Y, CHENG N. et al. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy [J]. PLoS ONE, 2015, 10 (3): e0122170 [21] DU H, SHI Y, LI D, et al. Screening and identification of key genes regulating fall dormancy in alfalfa leaves [J]. Plos One, 2017(12): e0188964 [22] DU H, SHI Y, LI D, et al. Proteomics reveals key proteins participating in growth difference between fall dormant and non-dormant alfalfa in terminal buds [J]. Journal of Proteomics, 2018(173): 126-138 [23] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods, 2001, 25(4): 402-408 [24] 程宁宁. 农杆菌介导紫花苜蓿子叶节的遗传转化研究[D]. 郑州: 河南农业大学, 2014: 25-28 [25] RYOZO I, MYUNGHEE K, YOZO N, et al. Environmental stress-resistant plant with high seed productivity and method for producing the same: US, 20150211016[P]. 2015-07-30 [26] LI Q, LANKEN C V, YANG J, et al. The yeast polyadenylate-binding protein (PAB1) gene acts as a disease lesion mimic gene when expressed in plants [J]. Plant Molecular Biology, 2000, 42(2): 335-344 [27] SACHS A B, DAVIS R W. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation [J]. Cell, 1989, 58(5): 857-867 [28] AMRANI N, MINET M, GOUAR M L, et al. Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro [J]. Molecular & Cellular Biology, 1997, 17(7): 3694-3701 [29] MINVIELLE-SEBASTIAL L, BEYER K, KRECIC A M, et al. Control of cleavage site selection during mRNA 3'end formation by a yeast hnRNP[J]. EmboJournal, 1998, 17(24): 7454-7468 [30] ZDRAVKO J, LORKOVIC' D K, KLAHRE U, HEMMINGS-MIESZCZAK M, et al. RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells [J]. RNA, 2000, 6(11): 1610-1624 [31] LAMBERMON M H L, SIMPSON G G, KIRK D A W, et al. UBP1, a novel hnRNP-like protein that functions at multiple steps of higher plant nuclear pre-mRNA maturation [J]. Embo Journal, 2014, 19(7): 1638-1649 |