[1] 姜华,毕玉芬,陈连仙,等.旱作条件下紫花苜蓿生理特性的研究[J].草地学报,2012,20(6):1077-1080[2] Boyer Js. Plant productivity and environment[J]. Science,1982,218(4571):443-448[3] Sprent Ji. Effects of water stress on nitrogen fixation in root nodules[J]. Plant and Soil,1971,35(1):225-228[4] Ramos M, Parsons R, Sprent J, et al. Effect of water stress on nitrogen fixation and nodule structure of common bean[J]. Pesquisa Agropecuria Brasileira,2003,38(3):339-347[5] Clement Mathilde, Annie Lambert, Didier Herouart, et al. Identification of new up-regulated genes under drought stress in soybean nodules[J]. Gene,2008,426(1/2):15-22[6] Ashraf Muhammad, Aafia Iram. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance[J]. Flora - Morphology, Distribution, Functional Ecology of Plants,2005,200(6):535-546[7] Gage D J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes[J]. Microbiology and Molecular Biology Reviews,2004,68(2):280-300[8] 陈文新.豆科植物根瘤菌-固氮体系在西部大开发中的作用[J].草地学报,2004,12(1):1-2[9] Zahran H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate[J]. Microbiology and Molecular Biology Reviews,1999,63(4):968-989[10] Becana M, Dalton D, Moran J, et al. Reactive oxygen species and antioxidants in legume nodules[J]. Physiologia Plantarum,2001,109(4):372-381[11] Matamoros M, Dalton D, Ramos J, et al. Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis[J]. Plant Physiology,2003,133(2):499-509[12] Yang P Z, Zhang P, Li B, et al. Effect of nodules on dehydration response in alfalfa (Medicago sativa L.)[J]. Environmental and Experimental Botany,2013,86(2):29-34[13] Antolin Mc, M Sanchez-Diaz. Photosynthetic nutrient use efficiency, nodule activity and solute accumulation in drought stressed alfalfa plants[J]. Photosynthetica (Czech Republic),1992,27(4):595-604[14] Figueiredo M, Burity H, Martinez C, et al. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici [J]. Applied Soil Ecology,2008,40(1):182-188[15] 康俊梅,樊奋成,杨青川. 41份紫花苜蓿抗旱鉴定试验研究[J].草地学报,2004,12(1):21-23[16] 李文娆,张岁岐,山仑,等.PEG 模拟旱后复水对紫花苜蓿茎叶生理生态特性的影响[J].西北农业学报,2008,17(6):247-252[17] 李文娆,张岁岐,山仑.苜蓿叶片及根系对水分亏缺的生理生化响应[J].草地学报,2007,15(4):299-305[18] 余玲,王彦荣, Garnett T,等.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学报,2006,15(3):75-85[19] 王玉佳,毕玉芬,姜华,等.干热胁迫对紫花苜蓿叶片生理特性的影响[J].草业科学,2011,28(6):1014-1018[20] Peel M, Waldron B, Jensen K, et al. Screening for salinity tolerance in alfalfa: A repeatable method[J]. Crop Science, 2004,44(6):2049-2053[21] Osborne S, Riedell W. Impact of low rates of nitrogen applied at planting on soybean nitrogen fixation[J]. Journal of Plant Nutrition,2011,34(3):436-448[22] 师尚礼,曹致中,赵桂琴.苜蓿根瘤菌有效性及其影响因子分析[J].草地学报,2007,15(3):222-226[23] Wang W B, Kim Y H, Lee H S, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses[J]. Plant Physiology and Biochemistry,2009,47(7):570-577[24] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973, 39(1):205-207[25] Dreywood R. Qualitative test for carbohydrate material[J]. Industrial & Engineering Chemistry Analytical Edition,1946, 18(8):499[26] Hissin P J, Russell H. A fluorometric method for determination of oxidized and reduced glutathione in tissues[J]. Analytical Biochemistry,1976,74(1):214-226[27] Giannopolitis C, Ries S. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314[28] Maehly A C, Chance B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis,1954,1(10):357-424[29] 赵金梅,周禾,王秀艳.水分胁迫下苜蓿品种抗旱生理生化指标变化及其相互关系[J].草地学报,2006,13(3):184-189[30] 周瑞莲,张承烈,金巨和.水分胁迫下紫花苜蓿叶片含水量,质膜透性,SOD,CAT 活性变化与抗旱性关系研究[J].中国草地,1991,13(2):20-24[31] Morgan J, Hare R, Fletcher R. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments[J]. Crop and Pasture Science,1986,37(5):449-457[32] Kishor P B K, Sangam S, Amrutha R N, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance[J]. Current Science,2005,88(3):424-438[33] Wang C X, Saldanha M, Sheng X Y, et al. Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp[J]. Microbiology,2007,153(2):388-398[34] Singh G, Sekhon H, Sharma P. Effect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.)[J]. Archives of Agronomy and Soil Science,2011,57(7):715-726[35] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410[36] Zgalla Hatem, Kathy Steppe, Raoul Lemeur. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants[J]. Journal of Integrative Plant Biology,2006,48(6):679-685[37] Shao H B, Chu L Y, Shao M A, et al. Higher plant antioxidants and redox signaling under environmental stresses[J]. Comptes Rendus Biologies,2008,331(6):433-441[38] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist,2006, 125(1):27-58[39] Passardi Filippo, Claudia Cosio, Claude Penel, et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports,2005,24(5):255-265[40] Foyer Ch, Noctor G. Oxidant and antioxidant signalling in plants: A re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell and Environment,2005,28(8):1056-1071 |