[1] Li F L, Liu M, Li Z P, et al. Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns[J]. Applied Soil Ecology,2013,64(1):1-6
[2] Gryta A, Frac M, Oszust K. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge[J]. Applied Biochemistry and Biotechnology,2014,174(4):1434-1443
[3] Djukic I, Zehetner F, Mentler A, et al. Microbial community composition and activity in different Alpine vegetation zones[J]. Soil Biology & Biochemistry,2010,42(2):55-161
[4] Zhang H F, Li G, Song XL, et al. Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land[J]. Acta Ecologica Sinica,2013,33(1):38-44
[5] Li T, Wang P, Wang P X. Microbial diversity in surface sediments of the Xisha trough the South China Sea[J]. Acta Ecologica Sinica,2008,28(3):1166-1173
[6] Wright R F, Roelofs J G M, Bredemeier M, et al. NITREX:responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen[J]. Forest Ecology & Management,1995,71:163-169
[7] Kazda M. Indications of unbalanced nitrogen nutrition of Norway spruce stands[J]. Plant&Soil,1990,128(1):97-101
[8] Lovett G M, Reiners W A, Olson R K. Cloud droplet deposition in subalpine balsam fir forests:hydrological and chemical inputs[J]. Science,1982,218(4579):1303-1304
[9] Parker G G. Through fall and Stem flow in the Forest Nutrient Cycle[J]. Advances in Ecological Research,1983,13(4):57-133
[10] 孙崇基. 酸雨[M].北京:中国环境科学出版社,2001
[11] Hofhansl F, Wanek W, Ge S, et al. Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica[J]. Biogeochemistry,2011,106(3):371-396
[12] 薛璟花,莫江明,李炯,等. 氮沉降对外生菌根真菌的影响[J]. 生态学报,2004,24(8):1785-1792
[13] 王汝南. 模拟大气氮沉降对温带森林土壤温室气体交换通量的影响[D]. 北京:北京林业大学,2012
[14] 芦光新,陈秀蓉,王军邦,等. 气候变化对青藏高原高寒草地生态系统草丛-地境界面微生物的影响研究进展[J]. 草地学报,2014,22(2):234-242
[15] 么中元,张乃莉,崔喜艳. 火烧和施氮对内蒙古半干旱草原土壤微生物群落碳源利用潜力的影响[J]. 草地学报,2014,22(4):713-721
[16] Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J]. Soil Biology&Bio-chemistry,2004,36(6):965-971
[17] Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest[J]. Forest Ecology&Management,2004,196(1):143-158
[18] Wang J, Zhu T, Ni H, et al. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China[J]. Plos One,2013,8(6):e66563-e66563
[19] Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology,1991,57(8):2351-2359
[20] Classen A T, Boyle S I, Haskins K E, et al. Community-level physiological profiles of bacteria and fungi:Plate type and incubation temperature influences on contrasting soils[J]. FEMS Microbiology Ecology,2003,44(3):319-328
[21] Liao M, Xie X M, Peng Y, et al. Characteristics of soil microbial community functional and structure diversity with coverage of Solidago Canadensis L[J]. Journal of Central South University,2013,20:749-756
[22] Jin Z, Ji F Y, Xu X, et al. Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage[J]. Biodegradation,2014,25:777-786
[23] Velasco A G, Probanza A, Mañero F J G, et al. Effect of fire and retardant on soil microbial activity and functional diversity in a Mediterranean pasture[J]. Geoderma,2009,153:186-193
[24] Kong W D, Zhu Y G, Fu B J, et al. Effect of long-term application of chemical fertilizers on microbial biomass and functional diversity of a black soil[J]. Pedosphere,2008,18(6):801-808
[25] Xie X M, Liao M, Ma A L, et al. Effects of contamination of single and combined cadmium and mercury on the soil microbial community structural diversity and functional diversity[J]. Chinese Journal of Geochemistry,2011,30:366-374
[26] 向泽宇,张莉,张全发,等. 青海不同林分类型土壤养分与微生物功能多样性[J]. 林业科学,2014,04(4):22-31
[27] 鲁顺保,张艳杰,陈成榕,等. 基于BIOLOG指纹解析三种不同森林类型土壤细菌群落功能差异[J]. 土壤学报,2013,03(3):618-623
[28] Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-a critique[J]. FEMS Microbiology Ecology,2002,42(1):1-14
[29] 郁培义,朱凡,王志勇,等. 氮添加对樟树林红壤微生物群落代谢功能的影响[J]. 中南林业科技大学学报,2013,33(3):70-74
[30] 时亚南. 不同施肥处理对水稻土微生物生态特性的影响[D]. 杭州:浙江大学,2007
[31] 华建峰,林先贵,蒋倩,等. 砷矿区农田土壤微生物群落碳源代谢多样性[J]. 应用生态学报,2013,24(2):473-480
[32] 袁颖红,樊后保,李辉信,等. 模拟氮沉降对杉木人工林土壤微生物的影响[J]. 林业科学,2012,09(9):8-14
[33] 朱凡,李天平,郁培义,等. 施氮对樟树林土壤微生物碳源代谢的影响[J]. 林业科学,2014,08(08):82-89
[34] Johnson D, Leake J R, Read D J. Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland[J]. Plant & Soil,2005,271(1-2):157-164
[35] Nabla K, Eoin B, John C, et al. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosm[J]. Environmental Microbiology,2004,6(10):1070-1080
[36] 郁培义. 氮素添加对樟树和湿地松两种林分土壤微生物群落多样性的影响[D]. 长沙:中南林业科技大学,2013
[37] Grandy A S, Strickland M S, Lauber C L, et al. The influence of microbial communities, management, and soil texture on soil organic matter chemistry[J]. Geoderma,2009,150(3):278-286
[38] Liu Z, Fu B, Zheng X, et al. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe:A regional scale study[J]. Soil Biology&Biochemistry,2010,42(3):445-450
[39] 梁健. 子午岭植物群落演替与土壤养分及微生物群落的关系[D]. 西安:陕西师范大学,2011
[40] 陈法霖. 植物凋落物组成对土壤微生物群落结构和功能的影响[D]. 长沙:湖南农业大学,2009 |