[1] Jones D H,Ley S,Aitken A. Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro:implications for function as adapter proteins[J]. FEBS Letters,1995,368(1):55-58 [2] Paul G,Heusden H V. 14-3-3 proteins:regulators of numerous eukaryotic proteins[J]. Iubmb Life,2010,57(9):623-629 [3] Lee J H,Lu H. 14-3-3γ Inhibition of MDMX-mediated p21 Turnover Independent of p53[J]. Journal of Biological Chemistry,2011,286(7):5136-5142 [4] Oecking C,Jaspert N. Plant 14-3-3 proteins catch up with their mammalian orthologs[J]. Current Opinion in Plant Biology,2009,12(6):760-765 [5] 文彬,王小菁. 14-3-3蛋白研究进展[J]. 生命科学,2004(4):37-41 [6] Delille J M,Ferl S R J. The Arabidopsis 14-3-3 family of signaling regulators[J]. Plant Physiology,2001,126(1):35-38 [7] Tian F X,Wang T,Xie Y L,et al. Genome-wide identification,classification,and expression analysis of 14-3-3 gene family in populus[J]. Plos One,2015,10(4):123-225 [8] Wu K,Rooney M F,Ferl R J. The Arabidopsis 14-3-3 multigene family[J]. Plant Physiol,1997,114(4):1421-1431 [9] Emi T,Kinoshita T,Shimazak K. Specific binding of vf14-3-3a isoform to the plasma membrane H+-ATPase in response to blue lightand fusicoccin in guard cells of broad bean[J]. Plant Physiol,2001,125(2):1115-1125 [10] Yao Y,Du Y,Jiang L,et al. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza Sativa[J]. Journal of Biochemistry and Molecular Biology,2007,40(3):349-357 [11] 戚传娇,郭传龙,孙利利,等. 植物14-3-3基因的研究进展[J]. 安徽农业科学,2012,40(24):11942-11945 [12] Yan J Q,He C X,Wang J,et al. Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions[J]. Plant Cell Physiol,2004,45(8):1007-1014 [13] Li X Y,Dhaubhadel S. Soybean 14-3-3 gene family:identification and molecular characterization[J]. Planta,2011,233(3):569-582 [14] Xu W F,Shi W M. Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots:analysis by Real-time RT-PCR[J]. Ann Bot,2006,98(5):965-974 [15] Sun G,Xie F,Zhang B. Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.)[J]. Functional & Integrative Genomics,2011,11(4):627-636 [16] 王文,蒋文兰,谢忠奎,等. NaCl胁迫对唐古特白刺幼苗生理指标的影响[J]. 草地学报,2012,20(5):907-913 [17] 姜明,戴有盛,吴承舜,等. 野生植物白刺果实的营养成分及其延缓衰老作用的研究[J]. 营养学报,1994(3):338-341 [18] 白明生,李国旗,陈彦云. 白刺药用有效成分含量的地域性研究[J]. 西北林学院学报,2008(6):147-150 [19] 武志博,邓娟,田永祯,等. 四种白刺属植物叶饲用品质分析及评价[J]. 甘肃农业大学学报,2017,52(6):97-100 [20] 常艳旭,苏格尔,王迎春. 白刺属野生植物的开发利用价值[J]. 内蒙古科技与经济,2005(14):21-23 [21] 单立山,李毅,张正中,等. 2种典型荒漠植物细根序级结构及功能特征分析[J]. 草地学报,2017,25(5):1014-1019 [22] 段娜,李清河,陈晓娜,等. 模拟干旱和氮沉降对唐古特白刺根系生长特征的影响[J]. 草地学报,2019,27(4):956-961 [23] 刘成功,孙高洁,段娜,等. 氮磷添加对唐古特白刺叶绿素含量和光合活性的影响[J]. 草地学报,2020,28(3):694-702 [24] 唐欣,王瑞辉,杨秀艳,等. 唐古特白刺液泡膜Na+/H+逆向运输蛋白基因NtNHX1的克隆与表达分析[J]. 林业科学,2014,50(3):38-44 [25] 郑琳琳,王佳,贺龙梅,等. 唐古特白刺蛋白激酶基因NtCIPK2超表达载体构建及紫花苜蓿转化研究[J]. 草业学报,2013,22(6):223-229 [26] 高子奇,王佳,汤宇晨,等. 唐古特白刺类黄酮-3-O-葡萄糖基转移酶基因(NtUFGT)的克隆与功能分析[J]. 草业学报,2020,29(5):159-170 [27] 马彦军,谢军,马瑞,等. NaCl胁迫下黑果枸杞bHLH转录因子家族鉴定与生物信息学分析[J]. 中草药,2020,51(20):5311-5319 [28] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))[J]. Methods,2001,25(4):402-408 [29] 王乐,陈何,陈家兰,等. 基于苋菜转录组的ARF基因家族鉴定及表达[J]. 应用与环境生物学报,2020,26(6):1-14 [30] 李芳,滕建晒,陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报,2018,36(3):459-469 [31] 陈明,沈文飚,徐朗莱. 14-3-3蛋白[J]. 生命的化学,2002,22(5):445-448 [32] 周颖,李冰樱,李学宝. 14-3-3蛋白对植物发育的调控作用[J]. 植物学报,2012,47(1):55-64 [33] 马超,宋鹏,尚申申,等. 二穗短柄草GRFs基因家族的鉴定及表达模式分析[J]. 核农学报,2020,34(6):1152-1162 [34] 王海波,代冬琴,郭俊云. 小桐子14-3-3基因家族的鉴定及低温胁迫应答[J]. 江苏农业学报,2017(5):1007-1015 |