[1] ZHANG Y,GAO Q,DONG S,et al. Effects of grazing and climate warming on plant diversity,productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau[J]. The Rangeland Journal,2015,37(1):57-65 [2] REN Y,LÜ Y,FU B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China:A meta-analysis[J]. Ecological Engineering,2016,95:542-550 [3] YU C,ZHANG Y,CLAUS H,et al. Ecological and environmental issues faced by a developing Tibet[J]. Environmental Science & Technology,2012,46(4):1979-1980 [4] ZHAO M,RUNNING S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science,2010,329(5994):940-943 [5] ZHOU W,GANG C,ZHOU L,et al. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China[J]. Acta Oecologica,2014,55:86-96 [6] HARRIS R B. Rangeland degradation on the Qinghai-Tibetan plateau:A review of the evidence of its magnitude and causes[J]. Journal of Arid Environments,2010,74(1):1-12 [7] WU J,ZHANG X,SHEN Z,et al. Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the northern Tibetan Plateau[J]. Rangeland Ecology & Management,2013,66(4):454-461 [8] WANG X,DONG S,YANG B,et al. The effects of grassland degradation on plant diversity,primary productivity,and soil fertility in the alpine region of Asia’s headwaters[J]. Environmental Monitoring and Assessment,2014,186(10):6903-6917 [9] 熊炳桥,赵丽娅,张劲,等. 草地沙漠化过程中土壤与地上植被的变化及其相互关系[J]. 生态环境学报,2017,26(3):8 [10] GANG C,ZHOU W,CHEN Y,et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation[J]. Environmental Earth Sciences,2014,72(11):4273-4282 [11] NECPáLOVá M,CASEY I,HUMPHREYS J. Effect of ploughing and reseeding of permanent grassland on soil N,N leaching and nitrous oxide emissions from a clay-loam soil[J]. Nutrient Cycling in Agroecosystems,2013,95(3):305-317 [12] 张英俊,周冀琼,杨高文,等. 退化草原植被免耕补播修复理论与实践[J]. 科学通报,2020,65(16):10 [13] 杜俊颖,段海峰,李军,等. 免耕补播对冀西北坝上地区草原植被群落特征的影响[J]. 草地学报,2022,30(9):2249-2254 [14] 李春玥,马飞,杨高文,等. 接种AMF替代磷肥促进退化草地黄花苜蓿的补播建植[J]. 草地学报,2022,30(10):2541-2548 [15] 王俊杰,云锦凤,吕世杰. 黄花苜蓿耐盐生理特性的初步研究[J]. 干旱区资源与环境,2008,22(12):6 [16] 贾风勤,贾娜尔,王林君. 黄花苜蓿的研究进展[J]. 伊犁师范学院学报(自然科学版),2008,3:22-24 [17] 郭美琪,郭童天,徐民乐,等. 补播苜蓿对退化草地植物群落结构和生产力的影响途径[J]. 草地学报,2024,32(1):46-53 [18] 周冀琼. 补播苜蓿对退化草地生产力和多样性的影响[D].北京:中国农业大学,2017:18-30 [19] SMITH S,READ D. The symbionts forming arbuscular mycorrhizas[M]. Mycorrhizal Symbiosis,2008:13-41 [20] LEI H,CHEN L,WANG H,et al. Dominant mycorrhizal association of trees determines soil nitrogen availability in subtropical forests[J]. Geoderma,2022,427(1):116-135 [21] AVERILL C,BHATNAGAR J M,DIETZE M C,et al. Global imprint of mycorrhizal fungi on whole-plant nutrient economics[J]. Proceedings of the National Academy of Sciences,2019,116(46):23163-23168 [22] BEGUM N,QIN C,AHANGER M A,et al. Role of arbuscular mycorrhizal fungi in plant growth regulation:Implications in abiotic stress tolerance[J]. Frontiers in Plant Science,2019,10:1068 [23] SIELAFF A C,H. WAYNEFUENTES-RAMIREZ,ANDRESHOFMOCKEL,KIRSTENWILSEY,BRIAN J. Mycorrhizal colonization and its relationship with plant performance differs between exotic and native grassland plant species[J]. Biological invasions,2019,21(6):1981-1991 [24] HO-PLÁGARO T,MORCILLO R J L,NAVARRETE M I T,et al. DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis[J]. New Phytologist,2020,229(1):548-562 [25] ZHOU J,WILSON G W T,COBB A B,et al. Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity[J]. Mycorrhiza,2022,32(1):15-32 [26] 李重祥. 紫花苜蓿高效丛枝菌根菌的筛选及利用研究[D].呼和浩特:内蒙古农业大学,2010:18-24 [27] 王幼珊,张淑彬,张美庆. 中国丛枝菌根真菌资源与种质资源[M]. 中国丛枝菌根真菌资源与种质资源,2012:264 [28] WANG S J,CHANG P,WANG P J,et al. Determination of trace elements in natural grapestone by inductively coupled plasma atomic emission spectrometry[J]. Spectroscopy and Spectral Analysis,2007,27(1):151-154 [29] MUELLER K E,TILMAN D,FORNARA D A,et al. Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment[J]. Ecology,2013,94(4):787-793 [30] CHENG MENG, NI LU, QI CHAI. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa in acidic soil[J]. Pratacultural Science,2017,11(2):352-360 [31] SINGH D,KWATRA S. Assessment of work pattern of the rotational workers of the railway industry[J]. Pantnagar Journal of Research,2013,11(3):317-325 [32] BUYSENS C,CéSAR V,FERRAIS F O,et al. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions[J]. Applied Soil Ecology,2016,105:137-143 [33] HORSCH C C A,ANTUNES P M,KALLENBACH C M. Arbuscular mycorrhizal fungal communities with contrasting life-history traits influence host nutrient acquisition[J]. Mycorrhiza,2023,33(1-2):1-14 [34] HEIJDEN V D,MARCEL G A,KLIRONOMOS,et al. Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity[J]. Nature,1998,396(6706):69-72 [35] WAGG C,JANSA J,SCHMID B,et al. Belowground biodiversity effects of plant symbionts support aboveground productivity[J]. Ecology Letters,2011,14(10):1001-1009 [36] QIN M,LI L,MIRANDA J P,et al. Experimental duration determines the effect of arbuscular mycorrhizal fungi on plant biomass in pot experiments:A meta-analysis[J]. Frontiers in Plant Science,2022,13:1024874 [37] RADUJKOVIC' D,VERBRUGGEN E,SEABLOOM E W,et al. Soil properties as key predictors of global grassland production:Have we overlooked micronutrients?[J]. Ecology Letters,2021,24(12):2713-2725 [38] WELCH R M,SHUMAN L. Micronutrient nutrition of plants[J]. Critical Reviews in Plant Sciences,1995,14(1):49-82 [39] DAI Z,GUO X,LIN J,et al. Metallic micronutrients are associated with the structure and function of the soil microbiome[J]. Nature Communications,2023,14(1):8456 [40] GIOVANNINI L,PALLA M,AGNOLUCCI M,et al. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants:Research strategies for the selection of the best performing inocula[J]. Agronomy,2020,10(1):106 [41] ABD-ALLA M H,EL-ENANY A-W E,NAFADY N A,et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil[J]. Microbiological Research,2014,169(1):49-58 [42] LARIMER A L,CLAY K,BEVER J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume[J]. Ecology,2014,95(4):1045-1054 [43] TSIKOU D,TSIKNIA M,NIKOLAOU C N,et al. The effect of Rhizophagus irregularis and Mesorhizobium loti co-inoculation onLotus japonicus[J]. Journal of Experimental and Molecular Biology,2019,20:1-2 [44] VÁZQUEZ M M,CÉSAR S,AZCÓN R,et al. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum,Pseudomonas,Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants[J]. Applied Soil Ecology,2000,15(3):261-272 [45] ENGELMOER D J P,BEHM J E,KIERS E T. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance[J]. Molecular Ecology,2014,23(6):1584-1593 [46] BEVER J D,RICHARDSON S C,LAWRENCE B M,et al. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism[J]. Ecology Letters,2008,12(1):13-21(责任编辑 付 宸)第32卷 第10期 Vol.32 No. 10草 地 学 报 ACTAAGRESTIASINICA 2024年 10月 |