[1] 孙吉雄. 草坪学[M]. 北京:中国农业出版社,2008:78-113 [2] 岑慧芳,钱文武,朱慧森,等. 干旱胁迫对草地早熟禾叶片显微结构和光合特征的影响[J]. 草地学报,2023,31(5):1368-1377 [3] 牛奎举,金小煜,李慧萍,等. 甘肃野生草地早熟禾萌发期抗旱性鉴定与评价[J]. 草地学报,2016,24(5):1041-1049 [4] 张然,李佳缙,王铭,等. 11份草地早熟禾种质材料对PEG-6000 胁迫的生理响应和耐旱性评价[J]. 草原与草坪,2021,41(2):113-121 [5] 王竞红,陈艾,张震,等. 生根剂GGR-6对紫羊茅和草地早熟禾响应干旱胁迫的影响[J]. 中国农学通报,2021,37(15):47-54 [6] YANG Z,XU L,YU J,et al. Changes in carbohydrate metabolism in two Kentucky bluegrass cultivars during drought stress and recovery[J]. Journal of the American Society for Horticultural Science,2013,138(1):24-30 [7] XU L,YU J,HAN L,et al. Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass[J]. Environmental and Experimental Botany,2013,89:28-35 [8] BIAN S,JIANG Y. Reactive oxygen species,antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery[J]. Scientia Horticulturae,2009,120(2):264-270 [9] XU L,HAN L,HUANG B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science,2011,136(4):247-255 [10] XU L,HAN L,HUANG B. Membrane fatty acid composition and saturation levels associated with leaf dehydration tolerance and post-drought rehydration in Kentucky bluegrass[J]. Crop Science,2011,51(1):273-281 [11] WANG Z,HUANG B,BONOS S,et al. Abscisic acid accumulation in relation to drought tolerance in Kentucky bluegrass[J]. HortScience,2004,39(5):1133-1137 [12] ZHANG X,GOATLEY M,WU W,et al. Drought-induced injury is associated with hormonal alteration in Kentucky bluegrass[J]. Plant Signaling and Behavior,2019,14(10):1-7 [13] CHEN Y,CHEN Y,SHI Z,et al. Biosynthesis and signal transduction of ABA,JA,and BRs in response to drought stress of Kentucky bluegrass[J]. International Journal of Molecular Sciences,2019,20(6):1289 [14] 杨时海,马玉寿,施建军,等. 青海草地早熟禾(Poa pratensis L.cv.Qinghai)近几年的研究进展[J]. 种子,2010,29(8):50-52 [15] 刘颖. 青海草地早熟禾近十年研究进展[J]. 青海畜牧兽医杂志,2021,51(2):67-69,52 [16] 赵新全. 三江源区退化草地生态系统修复与可持续管理[M]. 北京:科学出版社,2001:56-62 [17] GILL S S,TUTEJA N. Polyamines and abiotic stress tolerance in plants[J]. Plant Signaling & Behavior,2010,5(1):26-33 [18] ALCÁZAR R,ALTABELLA T,MARCO F,et al. Polyamines:molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta,2010,231:1237-1249 [19] TAKAHASHI T,KAKEHI J I. Polyamines:ubiquitous polycations with unique roles in growth and stress responses[J]. Annals of Botany,2010,105(1):1-6 [20] 孙鑫博,韩烈保. 亚精胺、精胺对结缕草低温下内源激素含量及内源多胺代谢的影响[J]. 草地学报,2015,23(4):804-810 [21] LUO J,LIU M,ZHANG C,et al. Transgenic centipedegrass (Eremochloa ophiuroides [Munro] Hack.) overexpressing S-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and NO signaling[J]. Frontiers in Plant Science,2017,8:1655 [22] LIU M,CHEN J,GUO Z,et al. Differential responses of polyamines and antioxidants to drought in a centipedegrass mutant in comparison to its wild type plants[J]. Frontiers in Plant Science,2017,8:792 [23] 刘南清,林绍艳,沈益新. 假俭草叶片渗透调节物质含量对冬前低温的响应及其与低温伤害的关系[J]. 草业学报,2019,28(3):122-130 [24] 安勐颍,孙珊珊,濮阳雪华,等. 外源亚精胺调控草地早熟禾幼苗耐盐性的研究[J]. 草业学报,2014,23(6):207-216 [25] LIU R,HUANG S,HUANG A,et al. Overexpression of CdtCIPK21 from triploid bermudagrass reduces salt and drought tolerance but increases chilling tolerance in transgenic rice[J]. Journal of Plant Physiology,2023,286:154006 [26] YANG L,SUN Q,GENG B,et al. Jasmonate biosynthesis enzyme allene oxide cyclase 2 mediates cold tolerance and pathogen resistance[J]. Plant Physiology,2023,193(2):1621-1634 [27] CHEN J,GUO Z,FANG J,et al. Physiological responses of a centipedegrass mutant to chilling stress[J]. Agronomy Journal,2013,105(6):1814-1820 [28] 黄小芳,石培礼,余成群,等. 非生物胁迫下牧草抗逆性研究进展[J]. 草地学报,2023,31(5):1293-1301 [29] 刘牧野,郭丽珠,岳跃森,等.干旱胁迫下不同性别野牛草生理及抗氧化酶基因表达差异[J]. 草业学报,2023,32(10):93-103 [30] 蔺亚平,杨成行,苏家豪,等. 6种高寒禾草对干旱胁迫的生理响应及抗旱性评价[J]. 草业科学,2021,38(12):2397-2405 [31] 董沁,鲁存海,白小明,等. 野生早熟禾(Poa L.) 对模拟干旱的生理响应[J]. 中国沙漠,2013,33(6):1743-1749 [32] ALCÁZAR R,MARCO F,CUEVAS J C,et al. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnology Letters,2006,28:1867-1876 [33] 王文娟,师尚礼,何龙,等. 干旱胁迫下多胺在植物体内的积累及其作用[J]. 草业学报,2023,32(6):186-202 [34] NAYYAR H,CHANDER S. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea[J]. Journal of Agronomy and Crop Science,2004,190(5):355-365 [35] ZHANG C M,HUANG Z. Effects of endogenous abscisic acid,jasmonic acid,polyamines,and polyamine oxidase activity in tomato seedlings under drought stress[J]. Scientia Horticulturae,2013,159:172-177 [36] KRISHNAN S,MEREWITZ E B. Polyamine application effects on gibberellic acid content in creeping bentgrass during drought stress[J]. Journal of the American Society for Horticultural Science,2017,142(2):135-142 [37] 鲁泽东,蒋宇佳,刘玚,等. 干旱胁迫下假俭草对外源亚精胺的生理响应[J]. 分子植物育种,2022,20(18):6207-6215 [38] 马祥,贾志峰,张永超. 亚精胺对青海扁茎早熟禾幼苗抗旱性的影响[J]. 青海畜牧兽医杂志,2020,50(5):9-15 [39] LI Z,PENG Y,ZHANG X Q,et al. Exogenous spermidine improves water stress tolerance of white clover ('Trifolium repens’ L.) involved in antioxidant defence,gene expression and proline metabolism[J]. Plant Omics,2014,7(6):517-526 |