[1] 王瑞泾,冯琦胜,金哲人,等.青藏高原退化草地的恢复潜势研究[J].草业学报,2022,31(6):11-22 [2] WANG W,WANG Q,WANG H. The effect of land management on plant community composition,species diversity,and productivity of alpine Kobersia steppe meadow[J]. Ecological Research,2006,21(2):181-187 [3] 罗亚勇,孟庆涛,张静辉,等.青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系[J].冰川冻土,2014,36(5):1298-1305 [4] ZHANG L,GUO H D,WANG C Z,et al. The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences,2014,72(6):1827-1841 [5] MIEHE G,SCHLEUSS P M,SEEBER E,et al. The Kobresia pygmaea ecosystem of the Tibetan, highlands-origin,functioning and degradation of the world's largest pastoral alpine ecosystem:Kobresia pastures of Tibet[J]. Science of the Total Environment,2019,648:754-771 [6] FU G,SHEN Z,ZHANG X,et al. Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau[J]. European Journal of Soil Biology,2012,52:27-29 [7] WU G L,REN G H,DONG Q M,et al. Above‐and belowground response along degradation gradient in an alpine grassland of the Qinghai‐Tibetan Plateau[J]. CLEAN-Soil, Air, Water,2014,42(3):319-323 [8] ZHANG C,WILLIS C G,KlEIN J A,et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet plateau[J]. Biological Conservation,2017,213:218-224 [9] JIN X Y,JIN H J,IWAHANA G,et al. Impacts of climate-induced permafrost degradation on vegetation:a review[J]. Advances in Climate Change Research,2021,12(1):29-47 [10] 秦大河,丁永建.冰冻圈变化及其影响研究——现状、趋势及关键问题[J].气候变化研究进展,2009,5(4):187-195 [11] FAYIAH M,DONG S K,KHOMERA S W,et al. Status and challenges of Qinghai-Tibet Plateau's grasslands:an analysis of causes,mitigation measures,and way forward[J]. Sustainability,2020,12(3):1099 [12] BERDUGO M,DELGADO-B BAQUERIZO M,SOLIVERES S,et al. Global ecosystem thresholds driven by aridity[J]. Science,2020,367(6479):787-790 [13] GUO X,DAI L,LI Q,et al. Light grazing significantly reduces soil water storage in alpine grasslands on the Qinghai-Tibet plateau[J]. Sustainability,2020,12(6):2523 [14] LIU S,ZHANG C,ZHANG Y,et al. Miniaturized spectral imaging for environment surveillance based on UAV platform[J]. Applied Optics and Photonics China (AOPC2017),2017,10461:420-429 [15] OMASA K, KAI K, TAODA H, et al. Model expectation of impacts of global climate change on biomes of the Tibetan Plateau[J]. Climate Change and Plants in East Asia, 1996:25-38 [16] WANG Y,SUN J,HE W,et al. Migration of vegetation boundary between alpine steppe and meadow on a century-scale across the Tibetan Plateau[J]. Ecological Indicators,2022,136:108599 [17] GANJURJAV H,GAO Q,GORNISH E S,et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau[J]. Agricultural and forest Meteorology,2016,223:233-240 [18] ZONG N,ZHAO G S,SHI P L. Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau[J]. Ecology and Evolution,2019,9(17):9782-9793 [19] ZHAO D S,WU S H,YIN Y,et al. Vegetation distribution on Tibetan Plateau under climate change scenario[J]. Regional Environmental Change,2011,11(6):905-915 [20] WANG Y F,XUE K,HU R H,et al. Vegetation structural shift tells environmental changes on the Tibetan Plateau over 40 years[J]. Science Bulletin,2023,68(17):1928-1937 [21] SHANG W,WU X D,ZHAO L, et al. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai-Tibet Plateau[J]. Catena,2016,137:670-678 [22] THOMPSON L R,SANDERS J G,MCDONALD D,et al. A communal catalogue reveals Earth's multiscale microbial diversity[J]. Nature,2017,551(7681):457-463 [23] NING D,DENG Y,TIEDJE J M,et al. A general framework for quantitatively assessing ecological stochasticity[J]. Proceedings of the National Academy of Sciences,2019,116(34):16892-16898 [24] WANG S,JIAO C,ZHAO D,et al. Disentangling the assembly mechanisms of bacterial communities in a transition zone between the alpine steppe and alpine meadow ecosystems on the Tibetan Plateau[J]. Science of the Total Environment,2022,847:157446 [25] WU M H,XUE K,WEI P J,et al. Soil microbial distribution and assembly are related to vegetation biomass in the alpine permafrost regions of the Qinghai-Tibet Plateau[J]. Science of the Total Environment,2022,834:155259 [26] 崔增.群落异向演替下高寒草甸多功能性变化及对短期禁牧的响应[D].西安:中国科学院大学,2023:98-99 [27] CHIQUAN H, KUIYI Z. The conservation of wetlands biodiversities and their sustainable utilization in Roige Plateau[J]. Journal of Natural Resources,1999,14(3):238-244 [28] 刘宥延.生态优先背景下祁连山草地"三生功能"权衡协同及空间格局优化研究[D].兰州:兰州大学,2023:1-2 [29] 蒋兴国,郑杰,许登奎.祁连山山水林田湖草保护修复调查研究之二——祁连山生态环境与可持续发展存在的问题[J].边疆经济与文化,2018(3):29-31 [30] 晋王强,郝春旭,妙旭华,等.甘肃祁连山生态文明示范区建设路径研究[J].环境保护,2019,47(14):33-36 [31] LIU H,MI Z,LIN L I,et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Sciences,2018,115(16):4051-4056 [32] Borcard D,Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices[J]. Ecological Modelling,2002,153(1):51-68 [33] DRAY S. adespatial:Multivariate multiscale spatial analysis. R package version 0.3-24[EB/OL], https://CRAN.R-project.org/package=adespatial,2024-09-06/2025-02-19 [34] 彭擎.气候变化背景下祁连山国家公园生态环境模拟及预测[D].南京:南京信息工程大学,2022:61-62 [35] SARUUL K, LI J W, NIU J M,et al. Typical steppe ecosystems maintain high stability by decreasing the connections among recovery, resistance, and variability under high grazing pressure[J]. Science of the Total Environment,2019,659:1146-1157 [36] ZHAN N,LIU W,YE T,et al. High-resolution livestock seasonal distribution data on the Qinghai-Tibet Plateau in 2020[J]. Scientific Data, 2023,10(1):142 [37] 刘玉祯,赵新全,董全民,等.放牧对草地生态系统结构与功能影响的研究进展[J].草地学报,2023,31(8):2253-2262 [38] 姚世庭,芦光新,邓晔,等.模拟增温对土壤真菌群落组成及多样性的影响[J].生态环境学报,2021,30(7):1404-1411 [39] FENG K, ZHANG Z J, CAI W W,et al. Biodiversity and species competition regulate the resilience of microbial biofilm community[J]. Molecular Ecology,2017,26(21):6170-6182 [40] EDGAR R C. UNOISE2:improved error-correction for Illumina 16S and ITS amplicon sequencing[J]. BioRxiv,2016,081257 [41] OKSANEN J,BLANCHET F G,Kindt R,et al. Package'vegan'[J]. Community ecology package, version,2013,2(9):1-295 [42] ZHANG J L, MA K P. spaa:an R package for computing species association and niche overlap[J]. Research progress of biodiversity conservation in China,2014,10:165-174 [43] WU W X,LU H P,SASTRI A,et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities[J]. The ISME Journal,2018,12(2):485-494 [44] NING D L,YUAN M T,WU L W,et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming[J]. Nature Communications,2020,11(1):4717 [45] 王根绪,胡宏昌,王一博,等.青藏高原多年冻土区典型高寒草地生物量对气候变化的响应[J].冰川冻土,2007,29(5):671-679 [46] 王谋,李勇,白宪洲,等.全球变暖对青藏高原腹地草地资源的影响[J].自然资源学报,2004,19(3):331-336 [47] 王一博,王根绪,沈永平,等.青藏高原高寒区草地生态环境系统退化研究[J].冰川冻土,2005,27(5):633-640 [48] 王俊峰,王根绪,吴青柏.沼泽与高寒草甸退化对CH4和CO2通量的影响[J].中国环境科学,2009,29(5):474-480 [49] WANG Y,DANG N,FENG K,et al. Grass-microbial inter-domain ecological networks associated with alpine grassland productivity[J]. Frontiers in Microbiology,2023,14:1109128 [50] RASOOL A,ALI S,ALI W,et al. Microbial diversity and community structure in alpine stream soil[J]. Geomicrobiology Journal,2021,38(3):210-219 [51] REN C J,ZHAO F Z,SHI Z,et al. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J]. Soil Biology and Biochemistry, 2017,115:1-10 [52] HARRIS R. Effect of water potential on microbial growth and activity[J]. Water Potential Relations in Soil Microbiology,1981,9:23-95 [53] ENGELHARDT I C,WELTY A,BLAZEWICZ S J,et al. Depth matters:effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system[J]. The ISME Journal,2018,12(4):1061-1071 [54] LIAUTAUD K,BARBIER M,LOREAU M. Ecotone formation through ecological niche construction:the role of biodiversity and species interactions[J]. Ecography,2020,43(5):714-723 [55] 孙建财,杨沙,武玉坤,等.高寒混播草地优势草种生态位与种间竞争力分析[J].草地学报,2022,30(5):1273-1279 [56] 王国庆,杜广明,聂莹莹,等.草甸草原封育演替过程中主要植物种群生态位动态分析[J].中国草地学报,2017,39(6):72-78 [57] JIAO S,YANG Y,XU Y,et al. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China[J]. The ISME Journal,2020,14(1):202-216 [58] 许驭丹,董世魁,李帅,等.植物群落构建的生态过滤机制研究进展[J].生态学报,2019,39(7):2267-2281 [59] TIAN J, HE N, HALE L, et al. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests[J]. Functional Ecology,2018,32(1):61-70 [60] YANG Y,ZHANG H,LIU W,et al. Effects of grazing intensity on diversity and composition of rhizosphere and non‐rhizosphere microbial communities in a desert grassland[J]. Ecology and Evolution,2023,13(7):e10300 [61] DELADO-BAQUERIZO M,MAESTRE F T,REICH P B,et al. Carbon content and climate variability drive global soil bacterial diversity patterns[J]. Ecological Monographs,2016,86(3):373-390 [62] BAHRAM M,HILDEBRAND F,FORSLUND S K,et al. Structure and function of the global topsoil microbiome[J]. Nature,2018,560(7717):233-237 [63] FIERER N,JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences,2006,103(3):626-631 |