[1] BAJPAI P. Xylanolytic Enzymes[M]. Kidlington:Academic Press, 2022:149-211 [2] WANG Y L, WANG W K, WU Q C, et al. The release and catabolism of ferulic acid in plant cell wall by rumen microbes:a review[J]. Animal Nutrition, 2022, 9:335-344 [3] 丁浩, 吴永杰, 邵涛. 纤维素酶和木聚糖酶对象草青贮发酵品质及体外消化率的影响[J]. 草地学报, 2021,29(11):2600-2608 [4] RYTIOJA J, HILDEN K, YUZON J, et al. Plant-polysaccharide-degrading enzymes from basidiomycetes[J]. Microbiology and Molecular Biology Reviews, 2014, 78(4):614-49 [5] BAJPAI P. Xylanolytic Enzymes[M]. Kidlington:Academic Press, 2022:1-12 [6] POLIZELI M L, RIZZATTI A C, MONTI R, et al. Xylanases from fungi:properties and industrial applications[J]. Applied Microbiology and Biotechnology, 2005, 67(5):577-91 [7] 郑明扬, 吴硕, 郭香. 添加乳酸菌和纤维素酶对砂仁叶青贮品质的影响[J]. 草地学报, 2021, 29(5):1113-1117 [8] BOWMAN G R, BEAUCHEMIN K A, SHELFORD J A. The proportion of the diet to which fibrolytic enzymes are added affects nutrient digestion by lactating dairy cows[J]. Journal of Dairy Science, 2002, 85(12):3420-3429 [9] BEAUCHEMIN K A, COLOMBATTO D, MORGAVI D P, et al. Mode of action of exogenous cell wall degrading enzymes for ruminants[J]. Canadian Journal of Animal Science, 2004, 84(1):13-22 [10] BUREENOK S, LANGSOUMECHAI S, PITIWITTAYAKUL N, et al. Effects of fibrolytic enzymes and lactic acid bacteria on fermentation quality andin vitrodigestibility of Napier grass silage[J]. Italian Journal of Animal Science, 2019, 18(1):1438-1444 [11] DESTA S T, YUAN X, LI J, et al. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives[J]. Bioresource Technology, 2016, 221:447-454 [12] SALEM A Z M, BUENDÍA-RODRÍGUEZ G, ELGHANDOUR M M M, et al. Effects of cellulase and xylanase enzymes mixed with increasing doses of Salix babylonica extract on in vitro rumen gas production kinetics of a mixture of corn silage with concentrate[J]. Journal of Integrative Agriculture, 2015, 14(1):131-139 [13] HARRIS P J, STONE B A. Chemistry and molecular organization of plant cell walls[M]. Oxford, United Kingdom:Blackwell Publishing Ltd, 2009:61-93 [14] EMILIE A, RENNIE E A, SCHELLER H V. Xylan biosynthesis[J]. Current Opinion in Biotechnology, 2014, 26:100-107 [15] VOGEL J. Unique aspects of the grass cell wall[J]. Current Opinion in Plant Biology, 2008, 11(3):301-307 [16] MUHAMMAD S, NOORA B, PHILIPPE M, et al. Cellulolytic and xylanolytic enzymes from yeasts:properties and industrial applications[J]. Molecules, 2022, 27(12):3783 [17] SHARMA M, KUMAR A. Xylanases:an overview[J]. British Biotechnology Journal, 2013, 3(1):40-45 [18] IANNACCONE F, ALBORINO V, DINI I, et al. In vitro application of exogenous fibrolytic enzymes from trichoderma spp. to improve feed utilization by ruminants[J]. Agriculture, 2022, 12(5):573-573 [19] 吴爽, 周玉香, 贾柔, 等. 饲用酶制剂在反刍动物生产中的应用概况[J]. 动物营养学报, 2020, 32(7):3005-3011 [20] KAEWPILA C, THIP-UTEN S, CHERDTHONG A, et al. Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage[J]. Agriculture, 2021, 11(1):1-12 [21] WANG Y, MCALLISTER T A, RODE L M, et al. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec) [J]. British Journal of Nutrition, 2001, 85(3):325-332 [22] JIN L, DUNIERE L, LYNCH J P, et al. Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silage[J]. Animal Feed Science and Technology, 2015, 207:62-74 [23] THOMAS M E, FOSTER J L, MCCUISTION K C, et al. Nutritive value, fermentation characteristics, and in situ disappearance kinetics of sorghum silage treated with inoculants[J]. Journal of Dairy Science, 2013, 96(11):7120-7131 [24] DEL VALLE T A, ANTONIO G, ZENATTI T F, et al. Effects of xylanase on the fermentation profile and chemical composition of sugarcane silage[J]. The Journal of Agricultural Science, 2019, 156(9):1123-1129 [25] EUN J S, BEAUCHEMIN K A. Assessment of the potential of feed enzyme additives to enhance utilization of corn silage fibre by ruminants[J]. Canadian Journal of Animal Science, 2008, 88(1):97-106 [26] TANG S X, TAYO G O, TAN Z L, et al. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws[J]. Journal of Dairy Science, 2008, 86(5):1164-1172 [27] CAMPANA M, DE MORAIS J P G, CAPUCHO E, et al. Fibrolytic enzymes increase fermentation losses and reduce fiber content of sorghum silage[J]. Annals of Animal Science, 2023, 23(1):165-172 [28] WANG S, ZHAO J, DONG Z, et al. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage[J]. Bioresource Technology, 2020, 309:123371 [29] PAPADIMITRIOU K, ALEGRIA A, BRON P A, et al. Stress Physiology of Lactic Acid Bacteria[J]. Microbiology and Molecular Biology Reviews, 2016, 80(3):837-90 [30] DEHGHANI M R, WEISBJERG M R, HVELPLUND T, et al. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics[J]. Livestock Science, 2012, 150(1-3):51-58 [31] LIU Q, ZONG C, DONG Z, et al. Effects of cellulolytic lactic acid bacteria on the lignocellulose degradation, sugar profile and lactic acid fermentation of high-moisture alfalfa ensiled in low-temperature seasons[J]. Cellulose, 2020, 27(14):7955-7965 [32] XIONG H, ZHU Y, WEN Z, et al. Effects of Cellulase, Lactobacillus plantarum, and Sucrose on Fermentation Parameters, Chemical Composition, and Bacterial Community of Hybrid Pennisetum Silage[J]. Fermentation, 2022, 8(8):1251 [33] COLOMBATTO D, MORGAVI D P, FURTADO A F, et al. Screening of exogenous enzymes for ruminant diets:Relationship between biochemical characteristics and in vitro ruminal degradation[J]. Journal of Dairy Science, 2003, 81:2628-2638 [34] NAIR J, YANG H E, REDMAN A A, et al. Effects of a mixture of lentilactobacillus hilgardii, lentilactobacillus buchneri, pediococcus pentosaceus and fibrolytic enzymes on silage fermentation, aerobic stability, and performance of growing beef cattle[J]. Translational Animal Science, 2022, 6(4):txac144 [35] BRUNA C A, JOÃO L P D, LUCIA M Z, et al. Effects of lignocellulolytic enzymes on the fermentation profile, chemical composition, and in situ ruminal disappearance of whole-plant corn silage[J]. Journal of Animal Science, 2021, 99(11):skab295 [36] SINGH D, JOHNSON T A, TYAGI N, et al. Synergistic Effect of lab strains (lb. fermentum and pediococcus acidilactisci) with exogenous fibrolytic enzymes on quality and fermentation characteristics of sugarcane tops silage[J]. Sugar Technology, 2022, 25(1):141-153 [37] KUPRYS-CARUK M, CHOINSKA R, DEKOWSKA A, et al. Silage quality and biogas production from spartina pectinatal fermented with a novel xylan-degrading strain of lactobacillus buchneri m b·00077[J]. Scientific Reports, 2021, 11(1):13175 [38] PHAKACHOED N, SUKSOMBAT W, COLOMBATTO D, et al. Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage[J]. Livestock Science, 2013, 157(1):100-112 [39] YANG J-C, GUEVARA-OQUENDO V H, REFAT B, et al. Effects of exogenous fibrolytic enzyme derived from trichoderma reesei on rumen degradation characteristics and degradability of low-tannin whole plant faba bean silage in dairy cows[J]. Dairy, 2022, 3(2):303-313 [40] YANG W Z, BEAUCHEMIN K A, RODE L M. A Comparison of methods of adding fibrolytic enzymes to lactating cow diets[J]. Journal of Dairy Science, 2000, 83(11):2512-2520 [41] TAO R, ATEF S, YIZHAO S, et al. PSXII-23 effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance and total tract digestibility of heifers fed a high forage diet[J]. Journal of Animal Science, 2019, 97:419-420 [42] ELGHANDOUR M M M Y, KHOLIF A E, MÁRQUEZ-MOLINA O, et al. Influence of individual or mixed cellulase and xylanase mixture on in vitro rumen gas production kinetics of total mixed rations with different maize silage and concentrate ratios[J]. Turkish Journal of Veterinary and Animal Sciences, 2015, 39:435-442 [43] SCHINGOETHE D J, STEGEMAN G A, TREACHER R J. Response of lactating dairy cows to a cellulase and xylanase enzyme mixture applied to forages at the time of feeding[J]. Journal of Dairy Science, 1999, 82(5):996-1003 [44] SILVA T H, TAKIYA C S, VENDRAMINI T H A, et al. Effects of dietary fibrolytic enzymes on chewing time, ruminal fermentation, and performance of mid-lactating dairy cows[J]. Animal Feed Science and Technology, 2016, 221:35-43 [45] NSEREKO V L, BEAUCHEMIN K A, MORGAVI D P, et al. Effect of a fibrolytic enzyme preparation from trichoderma longibrachiatum on the rumen microbial population of dairy cows[J]. Canadian Journal of Microbiology, 2002, 48(1):14-20 [46] 王国秀, 马东方, 黄永亮, 等. 纤维素酶和木聚糖酶处理大麦秸秆和玉米秸秆的绵羊瘤胃降解特性[J]. 动物营养学报, 2023, 35(3):1781-1790 [47] HRISTOV A N, MCALLISTER T A, CHENG K J. Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes:effects on nutrient digestion in cattle fed a barley grain diet[J]. Journal of Animal Science, 2000, 78(2):477-487 [48] FENG P, HUNT W C, PRITCHARD G, et al. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers[J]. Journal of Animal Science, 1996, 74(6):1349-1357 [49] ARRIOLA K G, ADESOGAN A T. Effect of fibrolytic enzyme application on the digestibility of corn silage, alfalfa hay, concentrates, and complete diets under simulated ruminal and preruminal conditions[J]. Animal Nutrition and Feed Technology, 2013, 13(3):537-550 [50] BEAUCHEMIN K A, JONES S D M, RODE L M, et al. Effects of fibrolytic enzymes in corn or barley diets on performance and carcass characteristics of feedlot cattle[J]. Canadian Journal of Animal Science, 1997, 77(4):645-653 [51] PJ V S, JB R, BA L. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Sciences, 1991, 74(10):3583-3597 [52] DIJKSTRA B J, TAMMINGA S. Simulation of the effects of diet on the contribution of rumen protozoa to degradation of fibre in the rumen[J]. British Journal of Nutrition, 1995, 74:617-634 [53] FORSBERG C W, CHENG K J. Biotechnology and Nutrition[M]. Butterworth Heinmann, Stoneham, UK:1992:89-95 [54] WANG Y, MCALLISTER T A. Rumen microbes, enzymes and feed digestion-a review[J]. Asian-Australasian Journal of Animal Sciences, 2002, 15(11):1659-1677 [55] WANG Y, MCALLISTER T A, RODE L M, et al. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the rumen simulation technique[J]. British Journal of Nutrition, 2001, 85(3):325-332 [56] YANG W Z, BEAUCHEMIN K A, RODE L M. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows[J]. Journal of Dairy Science, 1999, 82(2):391-403 [57] COLOMBATTO D, HERVÁS G, YANG W Z, et al. Effects of enzyme supplementation of a total mixed ration on microbial fermentation in continuous culture, maintained at high and low pH[J]. Journal of Animal Science, 2003, 81(10):2617-2627 [58] YANG W Z, BEAUCHEMIN K A, RODE L M. A comparison of methods of adding fibrolytic enzymes to lactating cow diets[J]. Journal of Dairy Science, 2000, 83(11):2512-2520 [59] YANG J, REFAT B, GUEVARA-OQUENDO V H, et al. Lactational performance, feeding behavior, ruminal fermentation and nutrient digestibility in dairy cows fed whole-plant faba bean silage-based diet with fibrolytic enzyme[J]. Animal, 2022, 16(9):100606 [60] KUNG L, COHEN M A, RODE L M, et al. The effect of fibrolytic enzymes sprayed onto forages and fed in a total mixed ratio to lactating dairy cows[J]. Journal of Dairy Science, 2002, 85(9):2396-2402 [61] ROMERO J J, MACIAS E G, MA Z X, et al. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation[J]. Journal of Dairy Science, 2016, 99(5):3486-3496 |