[1] Zhao SX,Ming C,Lian CL,et al. Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. Journal of Integrative Plant Biology,2011,53(7):570-585 [2] Landschulz WH,Johnson PF,Mcknight SL. The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins[J]. Science,1988,240(4860):1759-1764 [3] 杨颖,高世庆,唐益苗,等. 植物bZIP转录因子的研究进展[J]. 麦类作物学报,2009,29(4):730-737 [4] 曹红利,岳川,王新超,等. bZIP转录因子与植物抗逆性研究进展[J]. 南方农业学报,2012,43(8):1094-1100 [5] Zou M,Guan Y,Ren H,et al. A bZIP transcription factor,OsABI5,is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology,2008,66(6):675-683 [6] Rook F,Gerrits N,Kortstee A,et al. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene[J]. Plant Journal,2010,15(2):253-263 [7] Martinez-Garcia JF,Moyano E,Alcocer MJC,et al. Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors[J]. Plant Journal,1998,13(4):489-505 [8] Kusano T,Berberich T,Harada M,et al. A maize DNA-binding factor with a bZIP motif is induced by low temperature[J]. Molecular and General Genetics,1995,248(5):507-517 [9] Chen H,Chen W,Zhou J,et al. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice[J]. Plant Science,2012,193-194(3):8-17 [10] Liu C,Mao B,Ou S,et al. OsbZIP71,a bZIP transcription factor,confers salinity and drought tolerance in rice[J]. Plant Molecular Biology,2014,84(1-2):19-36 [11] 杜菲,陈新,杨春华,等. NaCl胁迫对不同柳枝稷材料种子萌发与幼苗生长的影响[J]. 草地学报,2011,19(6):1018-1024 [12] 于晓丹,杜菲,张蕴薇. 盐胁迫对柳枝稷种子萌发和幼苗生长的影响[J]. 草地学报,2010,18(6):810-815 [13] Fike JH,Parrish DJ,Wolf DD,et al. Long-term yield potential of switchgrass-for-biofuel systems[J]. Biomass & Bioenergy,2006,30(3):198-206 [14] Kim S,Rayburn AL,Voigt T,et al. Salinity Effects on Germination and Plant Growth of Prairie Cordgrass and Switchgrass[J]. Bioenergy Research,2012,5(1):225-235 [15] Barney JN,Mann JJ,Kyser GB,et al. Tolerance of switchgrass to extreme soil moisture stress:Ecological implications[J]. Plant Science,2009,177(6):724-732 [16] 朱毅,范希峰,侯新村,等. 中性盐胁迫对柳枝稷苗期生长和生理特性的影响[J]. 草地学报,2015,23(2):1476-1480 [17] 赵晓晓,谢坤良,贾冬冬,等. 柳枝稷幼穗分化过程及其分期[J]. 草地学报,2019,27(1):170-177 [18] Panicum virgatum v1.0,DOE-JGI,http://phytozome.jgi.doe.gov/ [19] Gasteiger E,Hoogland C,Gattiker A,et al. Protein Identification and Analysis Tools on the ExPASy Server[J]. The proteomics protocols handbook,2005 [20] Deléage G. ALIGNSEC:viewing protein secondary structure predictions within large multiple sequence alignments[J]. Bioinformatics,2017,33(24):3991-3992 [21] Waterhouse A,Bertoni M,Bienert S,et al. SWISS-MODEL:homology modelling of protein structures and complexes[J]. Nucleic Acids Research,2018,46(Web Server issue):W296-W303 [22] Nielsen H. Predicting Secretory Proteins with SignalP[J]. Methods in Molecular Biology,2017,1611:59-73 [23] Paul H,Keun-Joon P,Takeshi O,et al. WoLF PSORT:protein localization predictor[J]. Nucleic Acids Research,2007,35(Web Server):W585-W587 [24] Marchlerbauer A,Bo Y,Han L,et al. CDD/SPARCLE:functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Research,2017,45(Database issue):D200-D203 [25] Thompson JD,Gibson TJ,Plewniak F,et al. The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research[J].1997,25(24):4876-4882 [26] Tamura K,Peterson D,Peterson N,et al. MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood,Evolutionary Distance,and Maximum Parsimony Methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739 [27] Bailey TL,Mikael B,Buske FA,et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Research,2009,37(Web Server issue):W202-W208 [28] Jacinta G,Nicholas E,Allen VD,et al. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR[J]. Plos One,2014,9(3):e91474 [29] Livaka KJ,Schmittgenb TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408 [30] Jakoby M,Weisshaar B,Droge-Laser W,et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science,2002,7(3):106-111 [31] Nijhawan A,Jain M,Tyagi AK,et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology,2008,146(2):333-350 [32] Wei KF,Chen J,Wang YM,et al. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research,2012,19(6):463-476 [33] Wang JZ,Zhou JX,Zhang BL,et al. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum[J]. Journal of Integrative Plant Biology,2011,53(3):212-231 [34] Zhang M,Liu YH,Shi H,et al. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family[J]. BMC Genomics,2018,19(1):159 |