中文  |  English

菌物学报, 2021, 40(9): 2445-2460 doi: 10.13346/j.mycosystema.210163

研究论文

油酸促进灵芝三萜液态深层发酵的工艺研究及规模化验证

苏晓薇,1,2, 唐庆九1, 张劲松1, 冯娜1, 王金艳1, 周帅1, 冯杰,,1,*, 俞苓,,2,*

1.上海市农业科学院食用菌研究所 农业部南方食用菌资源利用重点实验室 国家食用菌工程技术研究中心 国家食用菌加工技术研发分中心 上海市农业遗传育种重点开放实验室 上海 201403

2.上海应用技术大学香料香精技术与工程学院 上海 201418

Synthesis of triterpenes in liquid submerged fermentation of Ganoderma lingzhi promoted by oleic acid

SU Xiao-Wei,1,2, TANG Qing-Jiu1, ZHANG Jing-Song1, FENG Na1, WANG Jin-Yan1, ZHOU Shuai1, FENG Jie,,1,*, YU Ling,,2,*

1. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Key Laboratory of Edible Fungal Resources and Utilization (South), Ministry of Agriculture, P.R. China; National Engineering Research Center of Edible Fungi; National R&D Center for Edible Fungal Processing; Key Laboratory of Agriculture Genetics and Breeding of Shanghai; Shanghai 201403, China

2. School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China

责任编辑: 王敏

收稿日期: 2021-04-26   接受日期: 2021-05-24  

基金资助: 国家自然科学基金(31801919)
上海人才发展资金(2019052)
上海市农业科学院卓越团队建设计划(2017A-06)
上海市农业科学院学科领域建设专项[农科国推2019 (匹配-12)]

Corresponding authors: *E-mail: sytufengjie@163.com, ORCID: FENG Jie (0000-0001-7579-0439), yling@sit.edu.cn, ORCID: YU Ling (0000-0002-5289-7310)

Received: 2021-04-26   Accepted: 2021-05-24  

Fund supported: National Natural Science Foundation of China(31801919)
Development Fund for Shanghai Talents(2019052)
SAAS Program for Excellent Research Team(2017A-06)
Academic Specialty Development Project of Shanghai Academy of Agricultural Sciences [SAAS 2019 (match-12)]

作者简介 About authors

ORCID:SUXiao-Wei(0000-0003-1568-4110) 。

摘要

灵芝三萜是灵芝中主要的活性成分之一,前期研究发现油酸可以促进灵芝三萜液态深层发酵下的发酵合成。本研究主要对油酸促进灵芝三萜液态深层发酵的工艺进行优化,并进行3L发酵罐规模的验证。通过单因素实验考察油酸的添加方式、添加时间和添加浓度对灵芝三萜的影响,结合响应面实验,获得最优工艺条件并进行验证:在发酵第32h添加1.21%高温灭菌油酸,最高灵芝三萜含量为42.69mg/g;在发酵第7h添加1.35%过滤除菌油酸,最高三萜含量为43.38mg/g,分别比对照提高2.04倍和2.08倍。在1 000mL摇瓶中添加高温灭菌油酸和过滤除菌油酸,灵芝三萜含量分别为32.18和32.48mg/g,为对照的1.96倍和1.95倍;在3L发酵罐规模下灵芝三萜含量分别为28.66和25.13mg/g,为对照的1.62倍和1.42倍。本研究系统优化了油酸促进灵芝三萜液态深层发酵的工艺条件,并在与工业生产相对应的3L发酵罐上进行验证。该研究可为灵芝三萜的规模化发酵提供重要参考和借鉴。

关键词: 灵芝三萜; 工艺优化; 响应面; 油酸; 规模化

Abstract

Triterpene is one of the most important active ingredients in Ganoderma lingzhi. Previous studies found that oleic acid could promote the biosynthesis of triterpenes in liquid submerged fermentation of Ganoderma lingzhi. In this study, the process of liquid submerged fermentation for synthesis of triterpenes by using oleic acid as promoter was optimized and verified on the scale of a 3L fermenter. The effects of the additive method, time for addition and concentration of oleic acid on triterpene synthesis were investigated by single factor experiment. The optimal process conditions were obtained and verified by response surface experiment. The highest triterpene content reaching 42.69mg/g was obtained by adding 1.21% moist heat sterilized oleic acid at 32h of fermentation, and by adding 1.35% filtered sterilized oleic acid at the 7h of fermentation, the highest triterpene content was 43.38mg/g, being 2.04 times and 2.08 times higher than triterpene content of the control, respectively. The triterpenes content was 32.18mg/g and 32.48mg/g respectively by adding moist heat sterilized and filterer sterilized oleic acid at 1 000mL scale of shake culture, being 1.96 times and 1.95 times higher as compared with the control. The triterpene content in 3L fermenter was 28.66mg/g and 25.13mg/g, 1.62 times and 1.42 times higher than that of the control. The technological conditions of liquid submerged fermentation of triterpenes promoted by oleic acid were successfully optimized and verified in a 3L fermenter, corresponding to industrial production. This study provide an important reference for large-scale fermentation of Ganoderma lingzhi for production of triterpenes.

Keywords: Ganoderma triterpenes; process optimization; response surface; oleic acid; scaled

PDF (615KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

苏晓薇, 唐庆九, 张劲松, 冯娜, 王金艳, 周帅, 冯杰, 俞苓. 油酸促进灵芝三萜液态深层发酵的工艺研究及规模化验证[J]. 菌物学报, 2021, 40(9): 2445-2460 doi:10.13346/j.mycosystema.210163

SU Xiao-Wei, TANG Qing-Jiu, ZHANG Jing-Song, FENG Na, WANG Jin-Yan, ZHOU Shuai, FENG Jie, YU Ling. Synthesis of triterpenes in liquid submerged fermentation of Ganoderma lingzhi promoted by oleic acid[J]. Mycosystema, 2021, 40(9): 2445-2460 doi:10.13346/j.mycosystema.210163

灵芝Ganoderma lingzhi Sheng H. Wu, Y. Cao & Y.C. Dai属多孔菌目灵芝科灵芝属(Cui et al. 2019;亓小妮等 2021),其主要活性成分灵芝三萜类化合物具有广泛的药理活性,具有抗肿瘤(唐庆九等 2010)、保肝(王明宇等2000)、抗HIV-1(Gao et al. 2003)、免疫调节(Feng et al. 2013)、降血脂(衣艳君和徐承水 2001)、抗真菌(Vazirian et al. 2014)、抗炎(Shailesh et al. 2009)和抗氧化(Hsu et al. 2018;Wu et al. 2019)等作用,因此对灵芝三萜的研究有着十分重要的意义。

灵芝三萜的主要来源是通过栽培方式的灵芝子实体及孢子粉和液态深层发酵方式的菌丝体及胞外液获得。与传统栽培相比,液态深层发酵方法有发酵周期短、生长速度快,发酵条件更易控制等优点(陈慧等 2015)。现阶段,通过液态深层发酵方式获取灵芝三萜已经成为研究热点。

近年来,优化灵芝液态深层发酵的工艺提高灵芝三萜等目标产物一般通过培养基配方和培养过程中的参数进行调节,但只能通过外在调控促进灵芝三萜的增长,具有一定的局限性,主要体现在目标产物的提高幅度有限,重复性研究工作较多,优化出的配方成本较高,与实际应用需求差距较大,缺少有意义的创造性研究工作。而在发酵体系中通过添加外源物促进灵芝三萜合成代谢方面的研究逐渐增加(陈慧等 2015)。油脂物质作为其中一类外源添加物,在食用真菌发酵时被利用,为合成次级代谢产物提供更多的能量;其可以通过改变细胞膜通透性和结构或直接影响代谢途径中某些关键酶活性从而促进灵芝的生长代谢(韦朝阳等 2015)。黎李平(2017)研究发现添加主要成分为49.26%油酸、17.83%棕榈酸、31.94%亚油酸和少量硬脂酸的薏苡仁油可以促进灵芝三萜的合成,说明油脂物质可以促进灵芝三萜的合成,但缺少对薏苡仁油中何种脂肪酸起到促进作用的研究。姚强等(2010)发现通过添加硬脂酸、亚油酸和棕榈酸进行灵芝液态深层发酵,不同的脂肪酸对菌丝体的生长和灵芝三萜有不同的影响,Yang et al.(2000)猜测脂肪酸的促进或者抑制作用可能与其碳链的长短以及不饱和程度的差异有关。朱会霞(2013)在比较油酸、α-萘乙酸、L-谷氨酸对灵芝液态深层发酵的影响中,发现影响灵芝三萜生成的最显著因素为油酸;本研究室前期也通过添加6种脂肪酸和表面活性剂类的外源性物质(Feng et al. 2017)进行灵芝液态深层发酵并发现油酸对灵芝菌丝体生长和三萜含量的提高效果最好。但油酸添加浓度过高、未系统研究油酸的添加工艺,且缺少规模化研究。

油酸作为安全且价格较低的单不饱和脂肪酸(冯杰等 2014),是一种很好的促进灵芝三萜产生的外源添加物,其工艺有应用于工业生产的价值。本研究通过单因素实验和响应面实验对不同添加方式的油酸促进灵芝三萜液态深层发酵的工艺进行优化,且通过3L发酵罐验证,为将该工艺应用于灵芝三萜的工业化生产提供前期研究。此外,本研究所用灵芝是中国广泛栽培灵芝,其拉丁学名为Ganoderma lingzhi,该种与过去文献中所述的欧洲灵芝Ganoderma lucidum是不同种类(Cao et al. 2012;戴玉成等 2013)。

1 材料与方法

1.1 供试材料

1.1.1 供试菌株:由中国微生物菌种保藏管理委员会农业微生物中心上海食用菌分中心提供,菌株编号:Ganoderma lingzhi G0023。

1.1.2 试剂:齐墩果酸标准品购自Sigma公司,油酸、香草醛、冰醋酸、高氯酸等分析纯均购自国药集团化学试剂有限公司。

1.1.3 培养基:(1)平板培养基:称取39g PDA培养基(美国BD公司)溶于1 000mL去离子水中,121℃灭菌15min备用。(2)种子液及发酵培养基:20g/L葡萄糖,3g/L酵母粉,1g/L磷酸二氢钾(KH2PO4),1g/L七水硫酸镁(MgSO4·7H2O),121℃灭菌30min备用。

1.2 方法

1.2.1 菌种活化以及种子液制备:挑取斜面保藏的菌种于平板上进行活化,再将平板转接至装有100mL发酵培养基的250mL三角瓶中,摇床(上海智城分析仪器制造有限公司)搅拌转速150r/min,培养温度26℃,培养7d后备用。

1.2.2 发酵摇瓶培养:将制备好的种子液以10%(V/V)接种量接种于发酵培养基中。摇瓶装液量分别为100mL/250mL三角瓶和400mL/1 000mL三角瓶,搅拌转速150r/min、26℃条件下培养 7d。

1.2.3 发酵罐培养:将种子液以10%(V/V)接种量接种于3L发酵罐(上海保兴生物设备工程有限公司)中进行培养。其中,发酵罐装液量2L、搅拌转速100r/min,培养温度26℃、通气量180L/h、培养7d。

1.2.4 油酸添加方式实验:油酸添加方式包括如下两种:一种和培养基混合在一起进行高温灭菌,灭菌条件为121℃、30min;另一种采用0.22μm微孔滤膜进行过滤除菌后再加入培养基中。

1.2.5 油酸添加浓度实验:在发酵培养基中将种子液以10%接种量接入,在第0天分别添加0.5%、1%、1.5%、2%、2.5%、3%、3.5%(V/V)浓度的油酸,培养7d后分别测定灵芝三萜含量和菌丝体生物量。实验重复3次,取平均值。

1.2.6 油酸添加时间实验:在发酵培养基中将种子液以10%接种量接入,分别在第0、1、2、3、4、5、6天添加0.5%(V/V)浓度的油酸,培养7d后分别测定灵芝三萜含量和菌丝体生物量。实验重复3次,取平均值。

1.2.7 油酸添加的响应面实验:在单因素实验的基础上,采用响应面分析方法对所得的发酵条件进一步优化,根据CCD(central composite design)中心组合设计法,将油酸添加的浓度和时间作为实验因素,将灵芝三萜含量作为响应值,进行2因素5水平的响应面实验。实验因素和水平设计见表1。将响应面结果与单因素的实验结果结合分析,确定对灵芝三萜含量影响的最优条件,并在250mL及1 000mL摇瓶和3L发酵罐对优化结果进行验证。

表1   响应面实验因素水平表

Table 1  Factors and levels of response surface design

因素
Factors
代码
Code
水平Levels
-a-10+1+a
时间
Fermentation
time (h)
A07244148
浓度
Concentration of
oleic acid (%, V/V)
B0.50.6511.351.5

新窗口打开| 下载CSV


1.2.8 灵芝菌丝体生物量测定(翟双星等 2018):将发酵液在12 000×g离心20min,去除上清液,沉淀用去离子水洗涤3次,收集菌丝体沉淀,于60℃下干燥后称重,结果以g/L表示,即每升发酵液中含有的菌丝体干质量数。

1.2.9 灵芝三萜检测:(1)比色法:将干燥后的菌丝体以料液比1:50使用95%乙醇提取,超声1h,8 000×g离心5min,取上清液,采用香草醛-冰醋酸法(谭洪升等 2018)检测。(2)高效液相色谱法(杨志空等 2020):将干燥后的菌丝体以料液比1:20使用无水乙醇提取,超声1h,8 000×g离心5min,取上清液进行检测。选用Waters 600-717-2996高效液相色谱仪(Waters公司)、Agilent ZORBAX Eclipse C18(4.6mm×250mm,5μm)色谱柱,以乙腈-醋酸(0.01%)水溶液作为流动相进行洗脱,流速为1.0mL/min,柱温30℃,进样量10μL,分析波长为240nm。

1.2.10 数据处理:实验数据采用Microsoft Excel 2013进行统计与分析,采用Design Expert 12进行响应面实验设计和解析,采用Origin 8.5软件进行绘图。

2 结果与分析

2.1 油酸添加单因素实验

2.1.1 油酸添加浓度实验:分别在第0天添加0.5%-3.5%的油酸,对三萜含量和菌丝体生物量均有不同的影响(图1)。当添加1%灭菌油酸时,三萜含量达到最高,为65.32mg/g,比对照提高了3.04倍;当添加2.5%过滤除菌油酸时,三萜含量达到最高,为90.28mg/g,比对照提高了4.20倍。当添加0.5%灭菌油酸和过滤除菌油酸时,菌丝体生物量达到最大,分别为14.03g/L和17.98g/L,比对照提高了1.38倍和1.77倍。在低浓度时,灵芝三萜含量提高且促进菌丝体的生长,高浓度时灵芝三萜含量和菌丝体生物量皆出现下降趋势,表明分别在添加0.5%-1.0%灭菌油酸和0.5%-2.0%过滤除菌油酸时,最适宜灵芝液态深层发酵。

图1

图1   不同浓度的高温灭菌油酸(左)和过滤除菌油酸(右)对三萜含量和菌丝体生物量的影响

Fig. 1   Effects of different concentrations of moist heat sterilized oleic acid (left) and filtered sterilized oleic acid (right) on triterpene content and mycelial biomass of Ganoderma lingzhi.


2.1.2 油酸添加时间实验:分别在0-6d添加0.5%油酸,对三萜含量和菌丝体生物量均有不同的影响(图2)。在第2天添加高温灭菌油酸时,三萜含量达到最高,为36.20mg/g,比对照提高了1.99倍;在第1天添加过滤除菌油酸时,三萜含量达到最高,为42.86mg/g,比对照提高了2.36倍。在第0天分别添加高温灭菌油酸和过滤除菌油酸时,菌丝体生物量达到最大,为14.45g/L和18.39g/L,比对照提高了1.18倍和1.44倍。在第6天添加油酸,菌丝体生物量有所上升,这可能与灵芝液态深层发酵达到稳定期、油酸并未能够参与其生长有关。发酵前期,灵芝三萜含量较对照提高且促进菌丝体的生长;发酵后期,灵芝三萜含量和菌丝体生物量皆出现下降趋势,表明分别在第0-2天添加高温灭菌油酸和第0-1天添加过滤除菌油酸,最适宜灵芝液态深层发酵。

图2

图2   不同时间添加高温灭菌油酸(左)和过滤除菌油酸(右)对三萜含量和菌丝体生物量的影响

Fig. 2   Effects of adding moist heat sterilized oleic acid (left) and filtered sterilized oleic acid (right) at different time on triterpene content and mycelial biomass of Ganoderma lingzhi.


2.2 油酸添加响应面实验

在单因素实验的基础上,以灵芝三萜含量为指标,分别添加高温灭菌油酸和过滤除菌油酸进行实验,选取添加时间(h)、添加浓度(%)作为因素,进行2因素5水平响应面分析(表2)。

表2   添加高温灭菌油酸和过滤除菌两种方式下的响应面实验方案及结果

Table 2  Design and results of adding oleic acid moist heat sterilized and filtered sterilized

试验点
Run No.
时间
Time (h)
浓度
Concentration
(%, V/V)
高温灭菌油酸条件下三萜含量
Triterpene content under the
condition of adding moist heat
sterilized oleic acid (mg/g)
过滤除菌油酸条件下三萜含量
Triterpene content under the
condition of adding filtered
sterilized oleic acid (mg/g)
10133.35±0.8840.41±1.75
271.3540.91±1.3845.74±0.09
370.6526.21±2.2831.64±1.16
424142.28±1.5040.35±1.50
5240.531.25±1.3135.31±0.69
624141.49±1.3543.36±0.75
7241.543.70±1.1947.21±1.37
824147.80±0.5042.08±1.85
9411.3545.53±0.4744.59±0.34
10410.6542.23±1.6337.12±0.22
1148136.56±1.7943.39±1.09

新窗口打开| 下载CSV


2.2.1 响应面优化高温灭菌油酸添加实验:通过对实验设计结果进行多项式回归拟合分析,所得灵芝三萜含量的优化拟合方程为y=41.52+4.68A+9.10B-0.601AB-3.22A²-1.96B²-1.77A³-2.35B³。

以三萜含量为评价指标的模型P<0.01说明模型具有显著性,该方法可靠;失拟项P=0.6798>0.05,表明失拟项不显著,说明模型计算结果与实际结果差异不显著。本实验相关系数模型R2=0.9966,表明三萜含量的实验值和预测值有很好的一致性,三萜含量回归模型拟合程度较好。从回归系数的显著性检验可知,回归模型中的A、B、A²、B²(P<0.01)皆达到极显著水平(表3),说明添加时间和添加浓度对三萜含量有显著影响。

表3   响应面方差分析结果

Table 3  Analyses of variance for CCD

来源
Source
平方和
Sum of squares
自由度
Df
均方
Mean square
F valueP value
模型Model365.01752.14123.940.0011
A17.53117.5341.670.0075
B66.26166.26157.490.0011
AB1.4411.443.430.1609
58.47158.47138.980.0013
21.62121.6251.400.0056
A36.2816.2814.930.0306
B311.05111.0526.250.0144
残差Residual1.2630.4207
失拟项 Lack of fit0.129410.12940.22850.6798
误差 Pure error1.1320.5664
总误差 Cor total366.2710
R20.9966R2Adj0.9885

新窗口打开| 下载CSV


两因素间交互作用的响应曲面图见图3。响应曲面图坡度越陡,说明其影响对灵芝三萜含量越显著。添加浓度的轴向等高线更为密集,结合表3说明添加浓度对三萜含量的影响更为显著,且两因素交互作用不显著(P>0.05)。

图3

图3   主要因素交互作用的响应曲面图

Fig. 3   Response surface plots showing main factor interaction.


通过响应面实验可得到最优条件为添加时间31.79h、添加高温灭菌油酸浓度1.21%时,预测三萜含量可达到45.63mg/g。根据实验实际可行性,将工艺优化为添加时间32h、添加浓度1.21%进行后续验证。2.2.2 响应面优化过滤除菌油酸添加实验:通过对实验设计结果做多项式回归拟合分析,所得灵芝三萜含量的优化拟合方程为y=41.93+ 1.07A+5.51B-1.66AB-0.2175A²-1.54B²。以三萜含量为评价指标的模型P<0.001说明模型极显著水平,该模型可靠;失拟项P=0.8839>0.05,表明失拟项不显著,说明模型计算结果与实际结果差异不显著。本实验相关系数模型R2=0.9788,表明三萜含量的实验值和预测值有较好的一致性,回归模型拟合程度较好。从回归系数的显著性检验可知,回归模型中的A(P<0.05)较显著水平、B(P<0.001)达到极显著水平(表4),说明添加浓度对三萜含量影响更大。

表4   响应面方差分析结果

Table 4  A analysis of variance for CCD

来源
Source
平方和
Sum of squares
自由度
Df
均方
Mean square
F valueP value
模型Model276.33555.2746.190.0003
A9.1419.147.640.0397
B242.501242.50202.67< 0.0001
AB11.01111.019.200.0290
0.267210.26720.22330.6564
13.35113.3511.160.0205
残差Residual5.9851.20
失拟项 Lack of fit1.4230.47470.20830.8839
误差 Pure error4.5622.28
总误差 Cor total282.3110
R20.9788R2Adj0.9576

新窗口打开| 下载CSV


两因素间交互作用的响应曲面图见图4。响应曲面图坡度越陡,说明其对灵芝三萜含量的影响越显著。添加浓度的等高线更为密集,结合表4说明添加浓度对三萜含量的影响更为显著,两因素交互作用显著(P<0.05)。

图4

图4   主要因素交互作用的响应曲面图

Fig. 4   Response surface plots showing main factor interaction.


通过响应面实验可得到最佳优化条件为当过滤除菌油酸添加时间为7.03h,添加浓度为1.35%时,预测三萜含量可达到46.27mg/g。根据实验的实际可行性,将工艺优化为添加时间7h、添加浓度1.35%进行验证。

2.3 响应面实验最优条件的摇瓶验证

在250mL摇瓶规模下对响应面最优条件进行验证,结果表明第32h添加1.21%的高温灭菌油酸,灵芝三萜含量达到42.69mg/g,与对照相比提高了2.04倍,比单因素组分别提高了13%和41%;第7h添加1.35%的过滤除菌油酸下灵芝三萜含量达到43.38mg/g,与对照相比提高了2.08倍,比单因素组分别提高了14%和53%(表5)。该验证的实际三萜含量与模型组预测值接近,表明模型预测值和验证值有良好的拟合性,优化模型可靠。

表5   250mL摇瓶规模的响应面摇瓶验证

Table 5  Response surface validation at the scale of 250mL shaking flask

类别
Category
高温灭菌
Moist heat sterilization
过滤除菌
Filtration sterilization
三萜含量
Triterpene
content (mg/g)
菌丝体生物量
Mycelial
biomass (g/L)
三萜含量
Triterpene
content (mg/g)
菌丝体生物量
Mycelial
biomass (g/L)
对照组
Control
20.89±0.3010.12±0.7820.89±0.3010.12±0.78
响应面优化组
Optimal response surface group
42.69±0.1914.42±0.0643.38±0.3020.79±0.35
响应面中心组
Response surface center group
39.38±0.1013.50±0.5938.78±0.0414.30±0.33
单因素优化组
Optimal single factor group
浓度
Concentration of
oleic acid
37.65±1.6213.89±0.1937.96±0.6119.03±0.16
时间
Time of
fermentation
30.08±0.1813.69±0.7528.27±0.5814.19±0.97

新窗口打开| 下载CSV


2.4 放大规模培养验证

在响应面最优条件下放大规模培养,结果显示,第32h添加1.21%的高温灭菌油酸,1 000mL规模下灵芝三萜含量为32.18mg/g,为对照的1.96倍;3L发酵罐规模下灵芝三萜含量为28.66mg/g,是对照的1.62倍(表6)。第7h添加1.35%的过滤除菌油酸,1 000mL规模下灵芝三萜含量32.48mg/g,为对照的1.95倍;3L发酵罐规模下灵芝三萜含量为25.13mg/g,为对照的1.42倍。

表6   放大规模的响应面验证

Table 6  Response surface validation at large scales of fermentation

规模
Scale
类别
Category
高温灭菌
Moist heat sterilization
过滤除菌
Filtration sterilization
三萜含量
Triterpene
content (mg/g)
菌丝体干重
Mycelial dry
weight (g/L)
三萜含量
Triterpene
content (mg/g)
菌丝体干重
Mycelial dry
weight (g/L)
1 000mL摇瓶
1 000mL shaking flask
对照组
Control
16.62±0.227.22±0.1216.62±0.227.22±0.12
响应面优化组
Optimal response
surface group
32.18±0.8913.63±0.1432.43±0.1714.01±0.01
响应面中心组
Response surface
center group
29.84±0.8511.64±0.1132.35±0.8712.78±0.06
3L发酵罐
3L fermenter
对照组
Control
17.67±0.297.76±0.1517.67±0.297.76±0.15
响应面优化组
Optimal response
surface group
28.66±0.4411.67±0.2925.13±0.4713.20±0.04

新窗口打开| 下载CSV


2.5 优化条件下3L发酵罐培养过程分析及灵芝三萜检测分析

摇瓶的发酵时间为7d,为了验证摇瓶的最优化工艺条件,将3L发酵罐发酵时间设定为7d。在3L发酵罐发酵过程中不定时取样,分别检测样品的菌丝体生物量和三萜含量(图5)。菌丝体生物量随着发酵时间的增加而增长,与对照相比,添加油酸的菌丝体生物量在发酵后期快速增长,在菌丝体生长过程中油酸作为辅助碳源(孔维威等 2015)被利用。随着发酵时间的增加,三萜含量呈上升趋势,且发酵后期三萜含量快速增长。

图5

图5   不同添加方式的油酸的菌丝体生物量(左)和三萜含量(右)的变化

Fig. 5   Changes in mycelial biomass (left) and triterpene content (right) of fermentation broth with additional moist heat sterilized and filtered sterilized oleic acid.


在灵芝液态深层发酵过程中对其进行监测溶氧量(dissolved oxygen,DO)和pH的变化可知,DO随着发酵时间的增长而逐渐降低(图6)。pH随着发酵时间的增长而下降,到后期皆呈平缓趋势。在发酵中期,油酸未被完全利用,油酸作为一种酸性的不饱和脂肪酸,加上次级代谢产物的增加使得pH下降;后期油酸逐渐被利用,则pH缓慢上升且趋于平缓。

图6

图6   两种添加方式油酸发酵液DO(左)和pH(右)的变化

Fig. 6   Changes in DO (left) and pH (right) of fermentation broth with moist heat sterilized and filtered sterilized oleic acid.


在最优工艺条件下灵芝菌丝体中的三萜含量大幅度增长,但是仅采用香草醛-冰醋酸方法检测灵芝三萜含量并不完全准确,为了验证油酸对灵芝三萜是否有促进作用,进行了液相分析。在不同规模的发酵过程中添加油酸,峰高相比对照显著增加(图7)。峰数代表了灵芝三萜的种类,峰面积代表了灵芝三萜的含量高低。对HPLC图进行处理,不同规模下添加油酸,峰数和峰面积大幅度增加,说明油酸对灵芝三萜确实具有促进作用,且可能会促使菌丝体产生新的灵芝三萜(表7)。

图7

图7   250mL摇瓶(左)、1 000mL摇瓶(中)和3L发酵罐(右)规模的灵芝三萜HPLC图

Fig. 7   HPLC fingerprint of fermented Ganoderma triterpenes in the scales of 250mL shaking flask (left), 1 000mL shaking flask (medium) and 3L fermenters (right) under the condition of adding moist heat sterilized and filtered sterilized oleic acid.


表7   不同发酵规模下的灵芝三萜HPLC图的峰面积

Table 7  Peak area of fermentation parameters in different fermentation scales

规模
Scale
250mL摇瓶
250mL shaking flask
1 000mL摇瓶
1 000mL shaking flask
3L发酵罐
3L fermenter
名称
Name
对照
Control
高温灭菌
Moist heat
sterilized
oleic acid
过滤除菌
Filtered
sterilized
oleic acid
对照
Control
高温灭菌
Moist heat
sterilized
oleic acid
过滤除菌
Filtered
sterilized
oleic acid
对照
Control
高温灭菌
Moist heat
sterilized
oleic acid
过滤除菌
Filtered
sterilized
oleic acid
主要出峰数
The number
of main peaks
466455678
总面积
Total area
(mAU·min)
40 841184 009223 33683 725687 430236 126352 088545 365792 093

注:表7中的主要出峰数在图7中标明

Note: The number of main peaks in Table 7 is indicated in Fig. 7.

新窗口打开| 下载CSV


3 讨论

前期研究通过添加不同的脂肪酸和表面活性剂发酵确定了油酸对灵芝三萜的促进作用最佳(Feng et al. 2017),孙冰沁(2017)也优化了油酸促进灵芝液态发酵的工艺。但是以上相关研究的油酸添加浓度过高,缺少添加工艺的系统化研究。本研究详细优化了添加油酸的工艺,在添加少量油酸的情况下大幅度提升菌丝体生物量以及三萜含量。本研究结合单因素实验和响应面实验方法,对油酸的添加方式、添加浓度和添加时间进行工艺优化,得到在第32h添加1.21%的高温灭菌油酸、在第7h添加1.35%的过滤除菌油酸,菌丝体快速增长的同时三萜含量达到最高,分别为42.69mg/g和43.38mg/g。

将响应面最优工艺在不同的发酵规模下进行验证,对不同发酵规模的发酵过程参数进行比较(表8)。发酵所得的最大菌丝体生物量、灵芝三萜得率、菌丝体生产强度以及灵芝三萜生产强度在250mL摇瓶规模下添加过滤除菌油酸高于高温灭菌油酸,在1 000mL摇瓶和3L发酵罐规模下添加油酸高于对照。还原糖消耗速率随着发酵规模的增大逐渐降低,可能与其发酵条件相关;添加油酸后还原糖利用率较低,可能是因为油酸作为辅助碳源参与灵芝液态深层发酵,降低了葡萄糖的利用。

表8   不同培养规模下的灵芝菌丝体发酵参数比较

Table 8  Fermentation parameters in different fermentation scales

参数名称
Parameters
发酵规模
Fermentation scales
250mL摇瓶
250mL shaking flask
1 000mL摇瓶
1 000mL shaking flask
3L发酵罐
3L fermenter
对照
Control
高温灭菌
Moist heat
sterilized
oleic acid
过滤除菌
Filtered
sterilized
oleic acid
对照
Control
高温灭菌
Moist heat
sterilized
oleic acid
过滤除菌
Filtered
sterilized
oleic acid
对照
Control
高温灭菌
Moist heat
sterilized
oleic acid
过滤除菌
Filtered
sterilized
oleic acid
初始还原糖浓度
Initial reducing sugar
concentration (g/L)
202020202020202020
最终还原糖浓度
Final reducing sugar
concentration (g/L)
5.411.211.53.212.2513.651515.415.5
发酵时间
Fermentation time (h)
168168168168168168168168168
最大菌丝体生物量
Maximum mycelial
biomass (g/L)
10.1214.4220.797.2213.6314.017.7611.6713.20
灵芝三萜得率
Triterpene yield (g/L)
0.2120.6100.8860.1200.4630.4610.1370.3340.332
还原糖消耗速率
Reducing sugar
consumption
rate [g/(L·h)]
0.0870.0520.0510.1000.0460.0380.0300.0270.027
菌丝体对还原糖得率
Mycelial yield on
reducing sugar (g/g)
0.6931.6392.4460.4301.7592.2061.5522.5372.933
灵芝三萜对还原糖得率
Triterpene yield on
reducing sugar (×10-2g/g)
1.4496.93310.4210.7155.9717.2542.7407.2617.378
菌丝体生产强度
Mycelial
productivity [g/(L·h)]
0.0600.0860.1240.0430.0810.0830.0460.0690.079
灵芝三萜生产强度
Triterpene
productivity [10-3g/(L·h)]
1.2593.6325.2730.7152.7542.7420.8161.9911.975

新窗口打开| 下载CSV


使用比色法和高效液相色谱(HPLC)法对不同发酵规模的菌丝体三萜含量进行检测,这是目前主要检测灵芝三萜的方法,比色法可以简单、快捷地检测出灵芝三萜含量,但该方法没有特异性,检测结果容易受到干扰物质的影响。HPLC法可以更精准地检测出三萜含量,但所对应的标准品数量大、价格昂贵,检测时间较长(张倩倩和黄青 2018)。结合使用比色法和HPLC法检测菌丝体中的三萜含量,可以充分证明油酸促进菌丝体生物量和三萜含量的提高。

本研究虽然证明了油酸对灵芝液态发酵有促进作用,但是在使用HPLC法检测时,缺少标准品对照,并未确认对何种灵芝三萜有促进作用,这些问题将在后续实验中进行研究讨论。在灵芝液态深层发酵的过程,通过添加油酸可以促进菌丝体的生长和灵芝三萜含量的提高,添加方式的不同导致最终结果产生一定差异,可能是因为经过不同方式处理,油酸自身的营养物质产生变化,也可能是在发酵过程中,不同添加方式的油酸被菌丝体利用能力不同,未来可通过机理方面的研究进行分析讨论。

参考文献

Cao Y, Wu SH, Dai YC, 2012.

Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”

Fungal Diversity, 56:49-62

DOI:10.1007/s13225-012-0178-5      URL     [本文引用: 1]

Chen H, Yang HL, Liu GQ, 2015.

Biosynthesis and fermentation control of triterpenoids from Ganoderma lingzhi

Mycosystema, 34(1):1-9 (in Chinese)

Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Dai YC, 2019.

Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China

Fungal Diversity, 97:137-302

DOI:10.1007/s13225-019-00427-4      URL     [本文引用: 1]

Dai YC, Cao Y, Zhou LW, Wu SH, 2013.

Notes on the nomenclature of the most widely cultivated Ganoderma species in China

Mycosystema, 32(6):947-952 (in Chinese)

Feng J, Zhang JS, Feng N, Yan MQ, Yang Y, Jia W, Lin CC, 2017.

A novel Ganoderma lucidum G0119 fermentation strategy for enhanced triterpenes production by statistical process optimization and addition of oleic acid

Engineering in Life Sciences, 17:430-439

DOI:10.1002/elsc.201600071      PMID:32624788      [本文引用: 2]

A novel enhanced triterpenes fermentation production process by G0119 with the addition of oleic acid in the medium has been developed and optimized. All of the six exogenous additives tested were found to exhibit stimulatory effect on mycelial growth and triterpenes biosynthesis by. The results show that oleic acid addition had significant role in promoting triterpenes production. The optimal concentration and time of oleic acid addition were determined to be 30 mL/L and 0 h, respectively. Furthermore, three significant factors influencing triterpenes production were identified as glucose, magnesium sulfate and temperature using the Plackett-Burman design. The optimized conditions by central composite design were 27.83 g/L glucose, 1.32 g/L magnesium sulfate, 26.2°C temperature. The triterpenes fermentation yield with the optimized medium based on actual confirmatory experimental data in 6 L fermentor was 1.076 g/L versus the statistical model predicted value of 1.080 g/L. Our innovatively developed triterpenes fermentation production technology and process has been proven to produce high triterpenes productivity and yield conceivably useful for industrial production.© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Feng J, Zhang JS, Yang Y, Jia W, Feng N, Liu F, 2014.

A method to improve Ganoderma triterpenes in submerged fermentation of Ganoderma lucidum mycelium

Shanghai: CN104017852A (in Chinese)

Feng L, Yuan L, Du M, Chen Y, Zhang MH, Gu JF, He JJ, Wang Y, Cao W, 2013.

Anti-lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from Ganoderma lucidum (Leyss. ex Fr.) Karst

Molecules, 18(8):9966-9981

DOI:10.3390/molecules18089966      URL     [本文引用: 1]

Gao YH, Zhou SF, Huang M, Xu AL, 2003.

Antibacterial and antiviral value of the genus Ganoderma P. Karst. species (Aphyllophoromycetideae): a review

International Journal of Medicinal Mushrooms, 5(3):12

DOI:10.1615/InterJMedicMush.v5.i3      URL     [本文引用: 1]

Hsu PL, Lin YC, Ni H, Mo FE, 2018.

Ganoderma triterpenoids exert antiatherogenic effects in mice by alleviating disturbed flow-Induced oxidative stress and inflammation

Oxidative Medicine and Cellular Longevity, 3491703

[本文引用: 1]

Kong WW, Yuan RQ, Kong WL, Han YE, Duan YK, Kang YC, Zhang YT, 2015.

Research progress of the effect of oils on edible and medicinal mushrooms

Edible and Medicinal Mushrooms, 23(6):355-358 (in Chinese)

Li LP, 2017.

The effects of exogenous substances coix seed oil on the liquid fermentation of Ganoderma lucidum triterpenes

Master Thesis, Central South University of Forestry and Technology, Changsha. 14-27 (in Chinese)

Qi XN, Xie M, Wu YY, Zhang X, Du XJ, 2021.

Research progress on preparation and pharmacological activities of Ganoderma lucidum triterpenes

Anhui Agricultural Sciences, 49(5):38-42 (in Chinese)

Shailesh D, Thyagarajan A, Daniel S, 2009.

Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum

International Immunopharmacology, 9(11):1272-1280

DOI:10.1016/j.intimp.2009.07.011      URL     [本文引用: 1]

Sun BQ, 2017.

Study on fermentation of Ganoderma lucidum mycelium with high triterpenoids’ production based on oleic acid induction and the effect of oleic acid on biosynthesis of key enzymes

Master Thesis, Zhejiang University, Hangzhou. 27-48 (in Chinese)

Tan HS, Li X, Gong BF, Li G, 2018.

Determination of total triterpenoids in fruiting body and spores of Ganoderma lucidum and assessment of their antitumor activity in vitro

Progress in Microbiology and Immunology, 46(1):43-48 (in Chinese)

Tang QJ, Ji Z, Hao RX, Liu YF, Yang Y, Zhang JS, 2010.

Inhibition of tumor cell proliferation by a neutral triterpenoid fraction from Ganoderma lucidum

Acta Edulis Fungi, 17(1):60-64 (in Chinese)

Vazirian M, Faramarzi MA, Ebrahimi SE, Esfahani HR, Samadi N, Hosseini SA, Asghari A, Manayi A, Mousazadeh A, Asef MR, Habibi E, Amanzadeh Y, 2014.

Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) and its main compounds

International Journal of Medicinal Mushrooms, 16(1):77-84

PMID:24940906      [本文引用: 1]

Mushrooms are considered one of the richest sources of natural antibiotics, and various species of them inhibit the growth of a wide diversity of microorganisms. Ganoderma lucidum, a well-known medicinal mushroom. has many pharmacological and biological activities including an antimicrobial effect, although few studies have investigated the antibacterial and antifungal effects of its purified compounds. The chemical structure of the purified compounds from the hexane fraction was elucidated as ergosta-7,22-dien-3β-yl acetate, ergosta-5,7,22-trien-3β-yl acetate (isopyrocalciferol acetate), ergosta-7,22-dien-3-one, ergosta-7,22-dien-3β-ol, and ergosta-5,7,22-trien-3β-ol (ergostrol). In addition, the structure of ganodermadiol was demonstrated after purification from the chloroform fraction. The fractions inhibited Gram-positive bacteria and yeast, with minimum inhibitory concentration values of 6.25 mg/mL, but were ineffective against Gram-negative bacteria in the tested concentrations. The results were comparable for isolated compounds, whereas the mixture of ergosta-7,22-dien-3β-yl acetate and isopyrocalciferol acetate was weakly effective against Escherichia coli (minimum inhibitory concentration, 10 mg/mL). It could be assumed that the antimicrobial effect of crude fractions is the consequence of mixing triterpenoid and steroid compounds.

Wang MY, Liu Q, Che QM, Lin ZB, 2000.

Effects of triterpenoids from Ganoderma lucidum (Leyss. ex Fr.) Karst. on three different experimental liver injury models in mice

Acta Pharmaceutica Sinica, 2000(5):326-329 (in Chinese)

Wei CY, He L, Shao SS, Feng YL, Li WQ, Cheng JW, 2015.

A Review on the effects of exogenous additives on submerged fermentation of edible and medicinal fungi

Food Science, 36(7):245-250 (in Chinese)

Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC, 2019.

Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species

Fungal Diversity, 98:1-76

DOI:10.1007/s13225-019-00432-7      URL     [本文引用: 1]

Yang FC, Ke YF, Kuo SS, 2000.

Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures

Enzyme and Microbial Technology, 27(3-5):295-301

PMID:10899556     

Fatty acids were added into the media to investigate their effects on the mycelial growth and polysaccharide formation by Ganoderma lucidum. The experiments were carried out in freely suspended cultures or immobilized cultures using shake flasks. The results indicate that the extent of stimulation or inhibition were associated with the types and levels of fatty acids. Oleic acid at the level of 0.15 g/100 ml led to a significant increase in cell concentration from 0.20 to 0.46 g/100 ml in a suspended culture and palmitic acid was of great advantage to polysaccharide production. In contrast, linoleic acid (0.1 g/100 ml) drastically suppressed both mycelial growth and polysaccharide formation. In immobilized cultures with fatty acids, the stimulation of mycelial growth remained the same level, but the enhancement of polysaccharide production became less. In addition, the growth of G. lucidum in the pattern of immobilization might be beneficial to the production of mycelia and polysaccharide.

Yang ZK, Han W, Feng N, Zhang JS, Wang CG, Zhou J, Wang JY, Tang QJ, 2020.

Determination of triterpenoids in Ganoderma lingzhi spore powder by HPLC

Mycosystema, 39(1):184-192 (in Chinese)

[本文引用: 1]

Yao Q, Gao XX, Gong ZY, Kong M, Ren PF, Liu Y, Han JD, Ren HX, 2010.

Effect of fatty acid supplementation on mycelium biomass, polysaccharide and triterpene production by Ganoderma lucidum grown in submerged culture

Acta Edulis Fungi, 17(3):55-59 (in Chinese)

Yi YJ, Xun CJ, 2001.

Experimental research on lowering the serum lipid effect of Ganoderma lucidum

Journal of Anhui Normal University (Natural Science Edition), 24(1):52-53 (in Chinese)

Zhai SX, Feng J, Tang QJ, Feng N, Yang Y, Liu YF, Tang CH, Zhou S, Zhang JS, 2018.

Effects of complex organic nitrogen source on triterpene production by Ganoderma lingzhi based on liquid submerged fermentation

Mycosystema, 37(12):1761-1770 (in Chinese)

Zhang QQ, Huang Q, 2018.

Revised method for determining Ganoderma lingzhi terpenoids by UV-Vis spectrophotometry based on colorimetric vanillin perchloric acid reaction

Mycosystema, 37(12):1792-1801 (in Chinese)

Zhu HX, 2013.

Study on the optimization of culture medium of Ganoderma fermentation before extraction of ganoderic acid

Northern Horticulture, 22:154-155 (in Chinese)

陈慧, 杨海龙, 刘高强, 2015.

灵芝三萜的生物合成和发酵调控

菌物学报, 34(1):1-9

[本文引用: 2]

戴玉成, 曹云, 周丽伟, 吴声华, 2013.

中国灵芝学名之管见

菌物学报, 32(6):947-952

[本文引用: 1]

冯杰, 张劲松, 杨焱, 贾薇, 冯娜, 刘方, 2014.

一种提高灵芝液体深层发酵菌丝体中灵芝三萜含量的方法

上海:CN104017852A

[本文引用: 1]

孔维威, 袁瑞奇, 孔维丽, 韩玉娥, 段亚魁, 康源春, 张玉亭, 2015.

油脂对食药用菌生长影响的研究进展

食药用菌, 23(6):355-358

[本文引用: 1]

黎李平, 2017.

薏苡仁油对灵芝三萜液体发酵的影响

中南林业科技大学硕士论文,长沙. 14-27

[本文引用: 1]

亓小妮, 谢苗, 吴杨洋, 张鑫, 杜秀菊, 2021.

灵芝三萜化合物的制备与药理活性研究进展

安徽农业科学, 49(5):38-42

[本文引用: 1]

孙冰沁, 2017.

基于油酸诱导的高产三萜灵芝菌丝体生物合成途径中关键酶编码基因研究

浙江大学硕士论文,杭州. 27-48

[本文引用: 1]

谭洪升, 李翔, 巩伯梁, 李刚, 2018.

灵芝子实体和孢子粉三萜含量的测定及体外抗肿瘤活性的评价

微生物学免疫学进展, 46(1):43-48

[本文引用: 1]

唐庆九, 季哲, 郝瑞霞, 刘艳芳, 杨焱, 张劲松, 2010.

灵芝中性三萜类成分的抗肿瘤作用

食用菌学报, 17(1):60-64

[本文引用: 1]

王明宇, 刘强, 车庆明, 林志彬, 2000.

灵芝三萜类化合物对3种小鼠肝损伤模型的影响

药学学报, 2000(5):326-329

[本文引用: 1]

韦朝阳, 贺亮, 邵双双, 冯依力, 李卫旗, 程俊文, 2015.

外源添加物对食药用菌液体发酵影响的研究进展

食品科学, 36(7):245-250

[本文引用: 1]

杨志空, 韩伟, 冯娜, 张劲松, 王晨光, 周靖, 王金艳, 唐庆九, 2020.

HPLC法测定灵芝孢子粉中三萜含量

菌物学报, 39(1):184-192

[本文引用: 1]

姚强, 高兴喜, 宫志远, 孔明, 任鹏飞, 刘岩, 韩建东, 任海霞, 2010.

不同脂肪酸对灵芝液体发酵的影响

食用菌学报, 17(3):55-59

[本文引用: 1]

衣艳君, 徐承水, 2001.

灵芝降血脂作用的实验研究

安徽师范大学学报(自然科学版), 24(1):52-53

[本文引用: 1]

翟双星, 冯杰, 唐庆九, 冯娜, 杨焱, 刘艳芳, 唐传红, 周帅, 张劲松, 2018.

复合有机氮源对灵芝三萜液态深层发酵的影响

菌物学报, 37(12):1761-1770

[本文引用: 1]

张倩倩, 黄青, 2018.

基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正

菌物学报, 37(12):1792-1801

[本文引用: 1]

朱会霞, 2013.

灵芝真菌发酵产灵芝酸培养基优化研究

北方园艺, 22:154-155

[本文引用: 1]

/